Be careful with your licence plates!

In Kansas, vehicle licence plates each have exactly three letters followed by three digits. We are told that to produce such a licence plate, it costs $ n \$n for each digit n > 0 n>0 and $ 10 \$10 for each digit 0 0 . For letters, the cost is proportional to the position of the letter in the alphabet, namely, $ 1 \$1 for A A , $ 2 \$2 for B B and so on, up to $ 26 \$26 for Z Z .

Determine how many different licence plates would cost exactly $ 100 \$100 .


The answer is 1287.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

The highest possible value is $108, for ZZZ 000. Finding the number of license plates that cost $100 dollars is equivalent to finding how many ways 8 indistinguishable balls can be placed in 6 distinguishable boxes, without exclusion. This leads to a value of 1287.

Could you explain why it is the same?

Johannes R - 5 years ago

Log in to reply

The indistinguishable "balls" in this case are decrementations of each character by 1. (8 decrementations means that the license plate is guaranteed to be $100) There is allowed to be any number of them in a character (putting all of them in a digit is only 2, all in a letter is R), there are six characters, and the order matters. So, 8 identical balls in 6 different boxes.

It is truely brilliant ####

Dhruv Joshi - 4 years, 2 months ago

L e t t e r s p a r t M a x i m u m c o s t i s 3 Z = 3 26 = 78 , d i g i t p a r t M i n i m u m c o s t i s 22. D i g i t p a r t M a x i m u m c o s t i s 3 0 = 3 10 = 30 , l e t t e r p a r t M i n i m u m c o s t i s 70. S o w e s h a l l h a v e 9 g r o u p s o f p l a t e s . P l a t e s ( D i g i t p a r t c o s t + L e t t e r p a r t c o s t = 100 ) = ( 22 + 78 ) / ( 23 + 77 ) / ( 24 + 76 ) ( 25 + 75 ) / ( 26 + 74 ) / ( 27 + 73 ) ( 28 + 72 ) / ( 29 + 71 ) / ( 30 + 70 ) S a m e n u m b e r o f p l a t e s c a n b e p u r c h a s e d w h e r e d i g i t a l p a r t c o s t D , o r p l a t e s w h e r e l e t t e r p a r t c o s t 70 + ( D 22 ) = D + 48. H e n c e w e s h a l l f i n d o n l y p l a t e s r e q u i r e d , w i t h r e f e r e n c e c o s t o f d i g i t a l p a r t . T h e g i v e n t a b l e g i v e s u s n u m b e r o f u n i q u e p l a t e s w e r e d i g i t a l p a r t s c a n p u r c h a s e d f o r 22 t o 30 c o s t . A l l T H R E E d i g i t s s a m e . I f a l l t h r e e d i g i t s a r e s a m e , t h e r e i s o n l y 3 ! 3 ! = 1 p l a t e f o r g i v e n c o s t . 8 + 8 + 8 c o s t 24 : 1 p l a t e . 9 + 9 + 9 c o s t 27 : 1 p l a t e . 10 + 10 + 10 c o s t 30 : 1 p l a t e . T W O d i g i t s s a m e . I f t w o d i g i t s a r e s a m e w e c a n h a v e 3 ! 2 ! = 3 p l a t e s w i t h d i f f e r e n t a r r a n g e m e n t f o r g i v e n c o s t . F o r d i f f e r e n t c o s t , t h e t a b l e b e l o w g i v e s n u m b e r o f p l a t e s w h e r e t w o d i g i t s a r e t h e s a m e . C o s t 10 + 10 + ? P l a t e s 9 + 9 + ? P l a t e s . 8 + 8 + ? P l a t e s 7 + 7 + ? P l a t e s 6 + 6 + ? P l a t e s T o t a l P l a t e s 22 10 + 10 + 2 3 9 + 9 + 4 3 8 + 8 + 6 3 7 + 7 + 8 3 6 + 6 + 10 3 15 23 10 + 10 + 3 3 9 + 9 + 5 3 8 + 8 + 7 3 7 + 7 + 9 3 12 24 10 + 10 + 4 3 9 + 9 + 6 3 7 + 7 + 10 3 9 25 10 + 10 + 5 3 9 + 9 + 7 3 8 + 8 + 9 3 9 26 10 + 10 + 6 3 9 + 9 + 8 3 8 + 8 + 710 3 9 27 10 + 10 + 7 3 3 28 10 + 10 + 8 3 9 + 9 + 10 3 6 29 10 + 10 + 9 3 3 Letters~part~Maximum~cost~~is~3*Z=3*26=78,~\implies~digit~part~Minimum~cost~is~~22.\\ Digit~part~Maximum~cost~~is~3*0=3*10=30,~\implies~letter~part~Minimum~cost~is~~70.\\ So~we~shall~have~~9~~groups~of~plates.\\ Plates~(Digit~part~cost+Letter~part~cost=100)\\ =(22+78)/(23+77)/(24+76)(25+75)/(26+74)/(27+73)(28+72)/(29+71)/(30+70)\\ ~~~~\\~~~~\\ Same~number~of~plates~can~be~purchased ~~where~digital~part~cost~D,~or~plates~where~letter~part~cost~70+(D-22)=D+48.\\ Hence~we~shall~find~only~plates~required,~with~reference~cost~of~ digital~part.\\ ~~~~\\~~~~\\ The~given~table~gives~us~number~of~unique~plates~were~digital~parts~can~purchased~for~22~to~30~cost.\\ ~~~~\\~~~~\\ \Large~\color{#3D99F6}{All~THREE~digits~same.}\\ If~all~three~digits~are~same,~ there~is~only~\dfrac {3!}{3!}=~{\huge { \color{#20A900} {1}} }~plate~for~given~cost.\\ 8+8+8~~cost~24 :-~~{\huge { \color{#20A900} {1}} }~plate.~~~~~9+9+9~~cost~27:-~~{\huge { \color{#20A900} {1}} }~plate.~~~~~10+10+10~~cost~30:-~~{\huge { \color{#20A900} {1}} }~plate.~~~ \\ ~~~~\\~~~~\\ \Large~\color{#3D99F6}{TWO~digits~same.}\\ If~two~digits~are~same~we~can~have~~\dfrac {3!}{2!}=~{\huge {\color{#20A900} {3}}}~plates~with~different~arrangement~for~given~cost. \\ For~different ~cost,~the~table~below~gives~~number~of~plates~~~where~~two ~digits~are~the~same. \\ \begin {array}{|c| |c|c||c|c||c|c||c|c||c|c||c|} \hline\\ Cost&10+10+?&Plates~&9+9+?&Plates.&8+8+?&Plates&7+7+?&Plates&6+6+?&Plates& Total~Plates&~&\\ \hline\\ 22&10+10+2&{\huge \color{#20A900}{3}}&9+9+4&{\huge \color{#20A900}{3}}&8+8+6&{\huge \color{#20A900}{3}}&7+7+8&{\huge \color{#20A900}{3}}&6+6+10&\huge \color{#20A900}{3}&{\Huge \color{#20A900}{15}}&\\ 23&10+10+3&{\huge \color{#20A900}{3}}&9+9+5&{\huge \color{#20A900}{3}}&8+8+7&{\huge \color{#20A900}{3}}&7+7+9&{\huge \color{#20A900}{3}}&&&{\Huge \color{#20A900}{12}}&\\ 24&10+10+4&{\huge \color{#20A900}{3}}&9+9+6&{\huge \color{#20A900}{3}}&~&~&7+7+10&{\huge \color{#20A900}{3}}&&& {\Huge \color{#20A900}{9}}&\\ 25&10+10+5&{\huge \color{#20A900}{3}}&9+9+7&{\huge \color{#20A900}{3}}&8+8+9&{\huge \color{#20A900}{3}}&&&&&{\Huge \color{#20A900}{9}}&\\ 26&10+10+6&{\huge \color{#20A900}{3}}&9+9+8&{\huge \color{#20A900}{3}}&8+8+710&{\huge \color{#20A900}{3}}&&&&&{\Huge \color{#20A900}{9}}&\\ 27&10+10+7&{\huge \color{#20A900}{3}}&&&&&&&&&{\Huge \color{#20A900}{3}}&\\ 28&10+10+8&{\huge \color{#20A900}{3}}&9+9+10&{\huge \color{#20A900}{3}}&&&&&&&{\Huge \color{#20A900}{6}}&\\ 29&10+10+9&{\huge \color{#20A900}{3}}&&&&&&&&&{\Huge \color{#20A900}{3}}&\\ \hline~~\end {array} \\ ~~~~~~\\ ~~~~\\
A l l T H R E E d i s t n i c t d i g i t s . I f a l l t h r e e d i g i t s a r e d i s t i n c t w e c a n h a v e 3 ! = 6 p l a t e s w i t h d i f f e r e n t a r r a n g e m e n t f o r g i v e n c o s t . S i n c e c o s t o f 28 , 29 , 30 d o n o t h a v e a n y p l a t e w i t h t h r e e d i s t i n c t d i g i t s , t h e y a r e n o t i n t h e t a b l e b e l l o w . W h e n a l l d i g i t s a r e d i f f e r e n t , t o g e t t h e p l a t e c o s t o f 100 , t h e d i g i t a l p a r t m u s t h a v e o n e d i g i t c o s t i n g 9 o r 10 o n l y . S o t h e t a b l e b e l o w . C o s t 10 i s o n e o f t h e d i g i t s . P l a t e s 9 i s o n e o f t h e d i g i t s . P l a t e s T o t a l P l a t e s 22 10 + 9 + 3 6 10 + 8 + 4 6 9 + 8 + 5 6 10 + 7 + 5 6 9 + 7 + 6 6 30 p l a t e s c o s t 22 e a c h . 23 10 + 9 + 4 6 10 + 8 + 5 6 9 + 8 + 6 6 10 + 7 + 6 6 24 p l a t e s c o s t 23 e a c h . 24 10 + 9 + 5 6 10 + 8 + 6 6 9 + 8 + 7 6 18 p l a t e s c o s t 24 e a c h . 25 10 + 9 + 6 6 10 + 8 + 7 6 12 p l a t e s c o s t 25 e a c h . 26 10 + 9 + 7 6 6 p l a t e s c o s t 26 e a c h . 27 10 + 9 + 8 6 6 p l a t e s c o s t 27 e a c h . \Large~\color{#3D99F6}{All~THREE~distnict~digits.}\\ If~all~three~digits~are~distinct~ we~can~have~3!={\huge { \color{#20A900} {6}} }~plates~with~different~arrangement~for~given~cost. \\ Since~cost~of~28,~29,~30~~do~not~have~any~plate~with~three~distinct~digits,~ they~ are~not~in~the~table~bellow. \\ When~all~digits~are~different,~to~ get~the~plate~cost~of~ 100,~the~digital~part~must~have~one~digit~costing~9~~or~~10~only.\\ So~the~table~below.\\ ~~~~\\~~~~\\ \begin {array}{|c|c|c|c} \hline\\ Cost&10~is~one~of~the~~digits.&Plates&9~is~one~of~the~~digits.&Plates& Total~Plates&~&\\ \hline\\ 22&10+9+3& {\huge \color{#20A900}{6}}&\\ &10+8+4& {\huge \color{#20A900}{6}}& 9+8+5& {\huge \color{#20A900}{6}}&&\\ &10+7+5& {\huge \color{#20A900}{6}}& 9+7+6& {\huge \color{#20A900}{6}}&&\\ \hline &&&&&&&\\ &&&&&{\Huge \color{#20A900}{30}}~plates~cost~22~each.\\ \hline\\ 23&10+9+4& {\huge \color{#20A900}{6}}&\\ &10+8+5&{\huge \color{#20A900}{6}}&9+8+6& {\huge \color{#20A900}{6}}& \\ &10+7+6&{\huge \color{#20A900}{6}}&\\ \hline\\ &&&&&{\Huge \color{#20A900}{24}}~plates~cost~23~each.\\ \hline\\ 24&10+9+5& {\huge \color{#20A900}{6}}&\\ &10+8+6&{\huge \color{#20A900}{6}}&9+8+7& {\huge \color{#20A900}{6}}& \\ \hline\\ &&&&&{\Huge \color{#20A900}{18}}~plates~cost~24~each.\\ \hline\\ 25&10+9+6& {\huge \color{#20A900}{6}}&\\ &10+8+7&{\huge \color{#20A900}{6}}&\\ \hline\\ &&&&&{\Huge \color{#20A900}{12}}~plates~cost~25~each.\\ \hline\\ 26&10+9+7& {\huge \color{#20A900}{6}} &&&{\Huge \color{#20A900}{6}}~plates~cost~26~each.\\ \hline\\ 27 &10+9+8&{\huge \color{#20A900}{6}}&&&{\Huge \color{#20A900}{6}}~plates~cost~27~each.\\ \hline\\ \end {array} \\ ~~~~\\~~~~\\
F r o m t h e a b o v e , w e g e t t h e c o n s o l i d a t e d t a b l e b e l o w . c o s t o f d i g i t a l p a r t A l l s a m e d i g i t s T w o d i g i t s s a m e A l l d i s t i n c t d i g i t T o t a l p l a t e s c o s t o f l e t t e r p a r t . 22 0 + 15 + 30 = 45 70 23 0 + 12 + 24 = 36 71 24 1 + 9 + 18 = 28 72 25 0 + 9 + 12 = 21 73 26 0 + 9 + 6 = 15 74 27 1 + 3 + 6 = 10 75 28 0 + 6 + 0 = 6 76 29 0 + 3 + 0 = 3 77 30 1 + 0 + 0 = 1 78 \Large~\color{#3D99F6}{From~the~above,~we~get~the~consolidated~table~below.} \\ \begin {array}{|c|c|c|c|c|c|c|} \hline\\ cost~of~digital~part&All~same~digits&Two~digits~same&All~distinct~digit~&Total~plates&cost~of~letter~part.&\\ 22&0&+15&+30&~~~~={\Huge \color{#D61F06}{45}}~~~~&70&\\ 23&0&+12&+24&~~~~={\Huge \color{#D61F06}{36}}~~~~&71&\\ 24&1&+9&+18&~~~~={\Huge \color{#D61F06}{28}}~~~~&72&\\ 25&0&+9&+12&~~~~={\Huge \color{#D61F06}{21}}~~~~&73&\\ 26&0&+9&+6&~~~~={\Huge \color{#D61F06}{15}}~~~~&74&\\ 27&1&+3&+6&~~~~={\Huge \color{#D61F06}{10}}~~~~&75&\\ 28&0&+6&+0&~~~~={\Huge \color{#D61F06}{6}}~~~~&76&\\ 29&0&+3&+0&~~~~={\Huge \color{#D61F06}{3}}~~~~&77&\\ 30&1&+0&+0&~~~~={\Huge \color{#D61F06}{1}}~~~~&78 &\\ \hline\\ \end {array} \\~~~~ \\~~~~~\\
P l a t e s f o r e a c h g r o u p G r o u p D i g i t a l p a r t p l a t e s L e t t e r p a r t p l a t e s = T o t a l p l a t e s o f t h e g r o u p . T o t a l u n i q u e p l a t e s e a c h c o s t i n g 100 $ 22 70 45 1 = 45 23 71 36 3 = 108 24 72 28 6 = 168 25 73 21 10 = 210 26 74 15 15 = 225 27 75 10 21 = 210 28 76 6 28 = 168 29 77 3 36 = 108 30 78 1 45 = 45 1287. \Large~\color{#3D99F6}{Plates~for~each~group}\\ \begin {array}{|c|c|c|c|c|c|c|} \hline\\ Group&Digital~part~plates*Letter~part~plates&=Total~plates~of~the~group.&\color{#D61F06}{Total~unique~plates~each~costing~100~\$}&\\ \hline \\ 22-70&45*1&=45&\\ 23-71&36*3&=108&\\ 24-72&28*6&=168&\\ 25-73&21*10&=210&\\ 26-74&15*15&=225&\\ 27-75&10*21&=210&\\ 28-76&6*28&=168&\\ 29-77&3*36&=108&\\ 30-78&1*45&=45&\\ \hline &&& \Huge \color{#20A900}{1287}. &\\ \hline\\ \end {array}
We can also use the tables below to find plates for Digit parts and then as above.



Niranjan Khanderia - 2 years, 7 months ago
Abdelhamid Saadi
May 12, 2016

The answer is the coefficient of x 100 x^{100} in the following polynomial: ( x + x 2 + . . . + x 10 ) 3 ( x + x 2 + . . . + x 26 ) 3 (x + x^2 + ... + x^{10})^3 (x + x^2 + ... + x^{26})^3 Which is by factorization the coefficient of x 94 x^{94} in the following polynomial: ( 1 + x + . . . + x 9 ) 3 ( 1 + x + . . . + x 25 ) 3 (1 + x + ... + x^{9})^3 (1+ x + ... + x^{25})^3 Which is the coefficient of x 8 x^{8} in the same polynomial since this polynomial is Palindromic : ( 1 + x + . . . + x 9 ) 3 ( 1 + x + . . . + x 25 ) 3 (1 + x + ... + x^{9})^3 (1+ x + ... + x^{25})^3 Which is by removing power more than 8 8 the coefficient of x 8 x^{8} in the following polynomial: ( 1 + x + . . . + x 8 ) 6 (1 + x + ... + x^{8})^6 ( 1 + x + . . . + x 8 ) 6 = ( 1 x 9 ) 6 ( 1 x ) 6 (1 + x + ... + x^{8})^6 = \frac {(1 - x^9)^6} {(1 - x)^6} let's take a detour through analysis: ( 1 x 9 ) 6 = 1 + O ( x 9 ) (1 - x^9)^6 = 1 + \mathcal{O}(x^9) and by Taylor series: 1 ( 1 x ) 6 = 1 + 6 x + 21 x 2 + 56 x 3 + 126 x 4 + 252 x 5 + 462 x 6 + 792 x 7 + 1287 x 8 + O ( x 9 ) \frac {1} {(1 - x)^6 } = 1+6 x+21 x^2+56 x^3+126 x^4+252 x^5+462 x^6+792 x^7+1287 x^8 + \mathcal{O}(x^9) so that : ( 1 + x + . . . + x 8 ) 6 = 1 + 6 x + 21 x 2 + 56 x 3 + 126 x 4 + 252 x 5 + 462 x 6 + 792 x 7 + 1287 x 8 + O ( x 9 ) (1 + x + ... + x^{8})^6 = 1+6 x+21 x^2+56 x^3+126 x^4+252 x^5+462 x^6+792 x^7+1287 x^8 + \mathcal{O}(x^9)

and the answer is 1287 \boxed{1287}

I got it till here. How did you calculate the coefficient of x 100 x^{100} ?

A Former Brilliant Member - 5 years, 1 month ago

Log in to reply

I've added some details.

Abdelhamid Saadi - 5 years, 1 month ago

Log in to reply

What I mean by symmetry is that the polynomial is Palindromic

P ( x ) = i = 0 n a i x i is a polynomial of degree n, then P is palindromic if a i = a n i for i = 0 , 1 , . . . , n P(x) = \sum_{i=0}^n a_ix^i \textrm{ is a polynomial of degree n, then P is palindromic if } a_i = a_{n - i} \textrm{ for } i = 0, 1, ..., n

We use the facts that:

  • the product of two Palindromic polynomials is Palindromic polynomial,

  • and power of a Palindromic polynomial is Palindromic polynomial.

1 + x + . . . + x 9 is Palindromic ( 1 + x + . . . + x 9 ) 3 is Palindromic 1 + x + ... + x^{9} \textrm{ is Palindromic } \implies (1 + x + ... + x^{9})^3 \textrm{ is Palindromic}

1 + x + . . . + x 25 is Palindromic ( 1 + x + . . . + x 25 ) 3 is Palindromic 1+ x + ... + x^{25} \textrm{ is Palindromic } \implies (1+ x + ... + x^{25})^3 \textrm { is Palindromic}

And finally ( 1 + x + . . . + x 9 ) 3 ( 1 + x + . . . + x 25 ) 3 is Palindromic (1 + x + ... + x^{9})^3 (1+ x + ... + x^{25})^3 \textrm { is Palindromic }

Abdelhamid Saadi - 5 years, 1 month ago

Log in to reply

@Abdelhamid Saadi That's alright. I got that. Thanks! Didn't think about symmetry then.

A Former Brilliant Member - 5 years, 1 month ago

i still don't get it how can it be symmetry?

Muhammad Ihsan - 5 years, 1 month ago
Fletcher Mattox
Oct 11, 2020
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
count = 0
for a in range(1, 27):
    for b in range(1, 27):
        for c in range(1, 27):
            for d in range(1, 11):
                for e in range(1, 11):
                    for f in range(1, 11):
                        cost = a+b+c+d+e+f
                        if cost == 100:
                            count += 1
print(count)

1
1287

Muhammad Ihsan
May 12, 2016

Well what's the answer then?

Faisal Hameed - 5 years, 1 month ago

Log in to reply

its hard if you using GF or inclusion exclusion (i have tried). so, i just coding it with c++. the answer is 1287. still waiting for great solution '-'

Muhammad Ihsan - 5 years, 1 month ago

@Muhammad Ihsan Nice work!

In the future, you can actually display your code directly by copying and pasting it into something like this:

For example:

1
2
3
4
5
6
7
int main()
{
    std::array<int, 5> arr = {3, 4, 1, 5, 2};
    std::sort(std::begin(arr), std::end(arr));
    std::sort(std::begin(arr), std::end(arr),
              std::greater<int>{});
}

This will allow others to read and copy your code more easily. :)

Eli Ross Staff - 5 years, 1 month ago

Log in to reply

thanks sir.. its very helpful :)

Muhammad Ihsan - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...