Because we are better than machines

3 2 3 2 32 m o d 7 = ? \Large 32^{32^{32}} \bmod 7 = \, ?


Do you like challenging your brain?. Enter the world where Calculators will not help
2 Cannot be determined 3 4 5 6 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 15, 2016

Since 32 and 7 are coprime integers, we can apply Euler's theorem .

3 2 3 2 32 3 2 3 2 32 mod 6 (mod 7) ϕ ( 7 ) = 6 3 2 ( 30 + 2 ) 32 mod 6 (mod 7) 3 2 2 32 mod 6 (mod 7) We note that 2 n { 2 (mod 6) if n is odd 4 (mod 6) if n is even 3 2 4 (mod 7) 2 20 (mod 7) 2 20 (mod 6) (mod 7) 2 2 (mod 7) 4 (mod 7) \begin{aligned} 32^{32^{32}} & \equiv 32^{32^{32} \text{ mod } \color{#3D99F6}{6}} \text{ (mod 7)} \quad \quad \small \color{#3D99F6}{\phi(7) = 6} \\ & \equiv 32^{(30+2)^ {32} \text{ mod } 6} \text{ (mod 7)} \\ & \equiv 32^{\color{#3D99F6}{2^ {32} \text{ mod } 6}} \text{ (mod 7)} \quad \quad \small \color{#3D99F6}{\text{We note that }2^n \equiv \begin{cases} 2 \text{ (mod 6)} & \text{if } n \text{ is odd} \\ 4 \text{ (mod 6)} & \text{if } n \text{ is even} \end{cases}} \\ & \equiv 32^{\color{#3D99F6}{4}} \text{ (mod 7)} \\ & \equiv 2^{20} \text{ (mod 7)} \\ & \equiv 2^{20 \text{ (mod 6)}} \text{ (mod 7)} \\ & \equiv 2^2 \text{ (mod 7)} \\ & \equiv \boxed{4} \text{ (mod 7)} \end{aligned}

Abhay Tiwari
Jun 15, 2016

32 32 32 7 \large \dfrac{{{\color{#D61F06}{32}}^{{\color{#3D99F6}{32}}^{32}}}}{7}

( 28 + 4 ) 32 32 7 \large \dfrac{{{\color{#D61F06}{(28+4)}}^{{\color{#3D99F6}{32}}^{32}}}}{7}

4 32 32 7 \large \dfrac{{{\color{#D61F06}{4}}^{{\color{#3D99F6}{32}}^{32}}}}{7}

4 32 × 32 × 32 × × 32 ( 32 t i m e s ) 7 \large \dfrac{{{\color{#D61F06}{4}}^{\color{#3D99F6}{32×32×32×\dots×32(32 times)}}}}{7}

2 32 × 32 × 32 × × 32 ( 31 t i m e s ) 7 \large \dfrac{{{\color{#D61F06}{2}}^{\color{#3D99F6}{32×32×32×\dots×32(31 times)}}}}{7}

4 32 × 32 × 32 × × 32 ( 30 t i m e s ) 7 \large \dfrac{{{\color{#D61F06}{4}}^{\color{#3D99F6}{32×32×32×\dots×32(30 times)}}}}{7}

2 32 × 32 × 32 × × 32 ( 29 t i m e s ) 7 \large \dfrac{{{\color{#D61F06}{2}}^{\color{#3D99F6}{32×32×32×\dots×32(29 times)}}}}{7}

Finally, we get 4 7 , gives remainder = 4 \dfrac{4}{7}, \text {gives remainder} \space =\boxed{\color{#3D99F6}{4}}

Hmmm, I don't think your solution made any sense. The usual approach is by Mr Chew Seong, or by Carmichael's lambda function , or even euler's theorem , or by order of an element .

Pi Han Goh - 4 years, 12 months ago

Log in to reply

Yes, we can do by any of the method you mentioned. But this is the basic approach for anyone who does not know any of the above. Although, it cannot be applied everywhere yet we can solve many questions. Otherwise Euler is a better option.

Abhay Tiwari - 4 years, 12 months ago

Log in to reply

No. I'm saying that your solution made no sense in the first place!

Pi Han Goh - 4 years, 12 months ago

Log in to reply

@Pi Han Goh okay, where does it not make sense? which line? I hope i can help to make it a little sensible.

Abhay Tiwari - 4 years, 12 months ago

Log in to reply

@Abhay Tiwari Your fourth line onwards

Pi Han Goh - 4 years, 12 months ago

Log in to reply

@Pi Han Goh 4 32 × 32 × 32 × × 32 ( 32 t i m e s ) 7 \large \dfrac{{{\color{#D61F06}{4}}^{\color{#3D99F6}{32×32×32×\dots×32(32 times)}}}}{7} , can also be written as ( 4 32 ) 32 × 32 × 32 × × 32 ( 31 t i m e s ) 7 \large \dfrac{{{\color{#D61F06}{(4^{32})}}^{\color{#3D99F6}{32×32×32×\dots×32(31 times)}}}}{7} .

now take only 4 32 7 \large \dfrac{{{\color{#D61F06}{4}}^{\color{#3D99F6}{32}}}}{7}

16 16 7 \large \dfrac{{{\color{#D61F06}{16}}^{\color{#3D99F6}{16}}}}{7} , which gives 2 16 7 \large \dfrac{{{\color{#D61F06}{2}}^{\color{#3D99F6}{16}}}}{7} .

( 2 4 = 16 ) 4 7 \large \dfrac{{{\color{#D61F06}{(2^{4}=16)}}^{\color{#3D99F6}{4}}}}{7} , which will again result in 16 7 \large \dfrac{{{\color{#D61F06}{16}}}}{7}

which finally yields 2 7 \dfrac{2}{7} .

Now, we have 2 32 × 32 × 32 × × 32 ( 31 t i m e s ) 7 \large \dfrac{{{\color{#D61F06}{2}}^{\color{#3D99F6}{32×32×32×\dots×32(31 times)}}}}{7} . Again performing the same steps we will get 4 7 \dfrac{4}{7} at last. And we will see that this keeps on repeating.

Abhay Tiwari - 4 years, 12 months ago

Log in to reply

@Abhay Tiwari Your phrasing is unusual, but your solution is essentially the same as "order of an element".

Try to use more "equal signs" and "congruence signs" when needed.

Pi Han Goh - 4 years, 12 months ago

Log in to reply

@Pi Han Goh okay, I will try to elaborate more from now onward.

Abhay Tiwari - 4 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...