Binomial limit

Calculus Level 4

lim n ( ( 3 n n ) ( 2 n n ) ) 1 n = a b \large \lim_{n \to \infty} \left(\frac{\binom{3n}{n} }{\binom{2n}{n} }\right) ^{\frac{1}{n}} = \frac{a}{b}

The equation above holds true for coprime integers a a and b b . What is a + b a+b ?


The answer is 43.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Nov 2, 2017

L = lim n [ ( 3 n n ) ( 2 n n ) ] 1 n \large \displaystyle L = \lim_{n \rightarrow \infty} \left [ \frac{\binom{3n}{n}}{\binom{2n}{n}} \right ]^\frac1n

L = lim n [ ( 3 n ) ! ( 2 n ) ! n ! ( 2 n ) ! n ! n ! ] 1 n \large \displaystyle L = \lim_{n \rightarrow \infty} \left [ \frac{\frac{ (3n)!}{(2n)! n!} }{\frac{(2n)!}{n!n!}} \right ]^\frac1n

L = lim n [ ( 3 n ) ! n ! ( 2 n ) ! ( 2 n ) ! ] 1 n \large \displaystyle L = \lim_{n \rightarrow \infty} \left [ \frac {(3n)! n!}{(2n)! (2n)!} \right ] ^\frac1n

By Stirling's approximation :

L = lim n [ 2 π 3 n ( 3 n e ) 3 n 2 π n ( n e ) n 2 π 2 n ( 2 n e ) 2 n 2 π 2 n ( 2 n e ) 2 n ] 1 n \large \displaystyle L = \lim_{n \rightarrow \infty} \left [ \frac{ \sqrt{2 \pi \cdot 3n} \left ( \frac{3n}{e} \right ) ^{3n} \cdot \sqrt{2 \pi \cdot n} \left ( \frac{n}{e} \right ) ^{n} }{\sqrt{2 \pi \cdot 2n} \left ( \frac{2n}{e} \right ) ^{2n} \cdot \sqrt{2 \pi \cdot 2n} \left ( \frac{2n}{e} \right ) ^{2n} } \right] ^\frac1n

L = lim n [ 3 2 ( 27 16 ) n ] 1 n \large \displaystyle L = \lim_{n \rightarrow \infty} \left [ \frac{\sqrt{3}}{2} \cdot \left ( \frac{27}{16} \right)^n \right ]^\frac1n

L = 27 16 \color{#20A900} \boxed{ \large \displaystyle L = \frac{27}{16} }

a = 27 , b = 16 , a + b = 43 \color{#3D99F6} \large \displaystyle a = 27, b = 16, \boxed{ \large \displaystyle a+b = 43}

Can you generalize the problem and solution to

l i m n ( ( x n n ) ( y n n ) ) 1 n \displaystyle lim_{n \to \infty} \large \left(\dfrac{\dbinom{x n}{n} }{\dbinom{y n}{n} }\right) ^{\frac{1}{n}}

For which x x and y y does the limit exist?

D G - 3 years, 7 months ago

Log in to reply

L = lim n [ ( x n n ) ( y n n ) ] 1 n \large \displaystyle L = \lim_{n \rightarrow \infty} \left [ \frac{\binom{xn}{n}}{\binom{yn}{n}} \right ]^\frac1n

L = lim n [ ( x n ) ! [ ( y 1 ) n ] ! [ ( x 1 ) n ] ! ( y n ) ! ] 1 n \large \displaystyle L = \lim_{n \rightarrow \infty} \left [ \frac {(xn)! [(y-1)n]!}{ [(x-1)n]! (yn)! } \right ] ^\frac1n

By Stirling's approximation :

L = lim n [ 2 π x n ( x n e ) x n 2 π ( y 1 ) n ( ( y 1 ) n e ) ( y 1 ) n 2 π y n ( y n e ) y n 2 π ( x 1 ) n ( ( x 1 ) n e ) ( x 1 ) n ] 1 n \large \displaystyle L = \lim_{n \rightarrow \infty} \left [ \frac{ \sqrt{2 \pi \cdot xn} \left ( \frac{xn}{e} \right ) ^{xn} \cdot \sqrt{2 \pi \cdot (y-1)n} \left ( \frac{(y-1)n}{e} \right ) ^{(y-1)n} }{\sqrt{2 \pi \cdot yn} \left ( \frac{yn}{e} \right ) ^{yn} \cdot \sqrt{2 \pi \cdot (x-1)n} \left ( \frac{(x-1)n}{e} \right ) ^{(x-1)n} } \right] ^\frac1n

L = lim n [ x ( y 1 ) y ( x 1 ) ( x x ( y 1 ) y 1 y y ( x 1 ) x 1 ) n ] 1 n \large \displaystyle L = \lim_{n \rightarrow \infty} \left [ \sqrt{\frac{x(y-1)}{y(x-1)}} \cdot \left ( \frac{x^x \cdot (y-1)^{y-1}}{y^y \cdot (x-1)^{x-1}} \right)^n \right ]^\frac1n

L = x x ( y 1 ) y 1 y y ( x 1 ) x 1 \color{#20A900} \boxed{ \large \displaystyle L = \frac{x^x \cdot (y-1)^{y-1}}{y^y \cdot (x-1)^{x-1}} }

Guilherme Niedu - 3 years, 7 months ago

Is stirling's approx the only way to calculate?

Md Zuhair - 3 years, 7 months ago

Log in to reply

Not sure. This was the only way I could think of.

Guilherme Niedu - 3 years, 7 months ago

Log in to reply

Same here...

Md Zuhair - 3 years, 7 months ago

No, u can also do it using Reimann sums.

A Former Brilliant Member - 3 years, 7 months ago

It can also be done using lim n->inf ((n!)/n^n)^1/n = 1/e. Dont know latex, so pardon the inconvenience.

Kaustav Ghosh - 3 years, 5 months ago

Log in to reply

Do you mean lim n ( n ! n n ) 1 n = 1 e \displaystyle\lim_{n\rightarrow \infty} (\dfrac{n!}{n^n})^\frac{1}{n} = \dfrac{1}{e} ?

A Former Brilliant Member - 3 years, 5 months ago

Log in to reply

@A Former Brilliant Member Yeah. he meant that

Md Zuhair - 3 years, 5 months ago
Tapas Mazumdar
Apr 6, 2018

L = lim n ( ( 3 n n ) ( 2 n n ) ) 1 n = lim n ( ( 3 n ) ! n ! ( 2 n ) ! / ( 2 n ) ! ( n ! ) 2 ) 1 n = lim n ( ( 3 n ) ! ( 2 n ) ! / ( 2 n ) ! ( n ! ) ) 1 n = lim n ( r = 1 n ( 2 n + r ) r = 1 n ( n + r ) ) 1 n = exp [ lim n 1 n ln ( r = 1 n ( 2 n + r ) r = 1 n ( n + r ) ) ] = exp [ lim n 1 n ln ( r = 1 n ( 2 n + r ) ) 1 n ln ( r = 1 n ( n + r ) ) ] = exp [ lim n 1 n r = 1 n ln ( 2 n + r ) 1 n r = 1 n ln ( n + r ) ] = exp [ lim n 1 n r = 1 n ln ( 2 + r n ) 1 n r = 1 n ln ( 1 + r n ) ] = exp [ 0 1 ln ( 2 + x ) d x 0 1 ln ( 1 + x ) d x ] By Riemann sums = exp ( ln 27 16 ) = 27 16 \begin{aligned} \displaystyle L &= \lim_{n \to \infty} \left(\dfrac{\binom{3n}{n} }{\binom{2n}{n} }\right)^{\frac{1}{n}} \\ \displaystyle &= \lim_{n \to \infty} \left( {\frac{(3n)!}{n! (2n)!}}{\huge /}{\frac{(2n)!}{(n!)^2}} \right)^{\frac{1}{n}} \\ \displaystyle &= \lim_{n \to \infty} \left( {\frac{(3n)!}{(2n)!}}{\huge /}{\frac{(2n)!}{(n!)}} \right)^{\frac{1}{n}} \\ \displaystyle &= \lim_{n \to \infty} \left( \dfrac{\displaystyle \prod_{r=1}^n (2n+r)}{\displaystyle \prod_{r=1}^n (n+r)} \right)^{\frac 1n} \\ \displaystyle &= \exp{ \left[ \lim_{n \to \infty} \dfrac 1n \ln \left( \dfrac{\displaystyle \prod_{r=1}^n (2n+r)}{\displaystyle \prod_{r=1}^n (n+r)} \right) \right] } \\ \displaystyle &= \exp{ \left[ \lim_{n \to \infty} \dfrac 1n \ln \left( \prod_{r=1}^n (2n+r) \right) - \dfrac 1n \ln \left( \prod_{r=1}^n (n+r) \right) \right] } \\ \displaystyle &= \exp{ \left[ \lim_{n \to \infty} \dfrac 1n \sum_{r=1}^n \ln (2n+r) - \dfrac 1n \sum_{r=1}^n \ln (n+r) \right] } \\ \displaystyle &= \exp{ \left[ \lim_{n \to \infty} \dfrac 1n \sum_{r=1}^n \ln \left(2+ \dfrac rn \right) - \dfrac 1n \sum_{r=1}^n \ln \left(1 + \dfrac rn \right) \right] } \\ \displaystyle &= \exp{ \left[ \int_0^1 \ln(2+x) \,dx - \int_0^1 \ln(1+x) \,dx \right] } & \small\color{#20A900}{\text{By Riemann sums}}\\ \displaystyle &= \exp{ \left( \ln \dfrac{27}{16} \right) } \\ \displaystyle &= \boxed{\dfrac{27}{16}} \end{aligned}

What you did after third step?

Sahil Silare - 3 years, 2 months ago

Log in to reply

Thanks. I've added in another step instead of that for easier understanding.

Tapas Mazumdar - 3 years, 2 months ago

Log in to reply

Okay, got it :)

Sahil Silare - 3 years, 2 months ago

Congrats that u got it :)

A Former Brilliant Member - 3 years, 2 months ago

Log in to reply

Please no sarcasm here.

Sahil Silare - 3 years, 2 months ago

Log in to reply

@Sahil Silare I told this to Tapas not to u

A Former Brilliant Member - 3 years, 2 months ago

Actually, he's my friend and he happened to have asked me this problem one day. That time I wasn't able to solve it that's why he said to me.

Tapas Mazumdar - 3 years, 2 months ago

Yeah. Thanks bro. :)

Tapas Mazumdar - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...