Binomial Logarithms

Calculus Level 5

Evaluate the limit lim n n 2 j = 1 n ( 1 ) n j j n 1 ln j j ! ( n j ) ! . \large \lim_{n \to \infty} n^2\sum_{j=1}^n \frac{(-1)^{n-j} j^{n-1} \ln j}{j! (n-j)!}.


Inspiration


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jun 11, 2017

We prove by induction that J n ( a ) = 0 1 0 1 0 1 1 x 1 + x 2 + + x n + a d x 1 d x 2 d x n = 1 ( n 1 ) ! j = 0 n ( n j ) ( 1 ) n j ( a + j ) n 1 ln ( a + j ) J_n(a) \; = \; \int_0^1 \int_0^1 \cdots \int_0^1 \frac{1}{x_1+x_2+\cdots + x_n + a}\,dx_1\,dx_2\,\cdots\,dx_n \; = \; \frac{1}{(n-1)!}\sum_{j=0}^n {n \choose j}(-1)^{n-j}(a+j)^{n-1} \ln(a+j) for all n N n \in \mathbb{N} and a > 0 a > 0 . To start with, J 1 ( a ) = 0 1 d x x + a = ln ( a + 1 ) ln a J_1(a) \; = \; \int_0^1 \frac{dx}{x+a} \; = \; \ln(a+1) - \ln a If we assume that the formula is correct for J n ( a ) J_n(a) , then J n + 1 ( a ) = 0 1 J n ( a + x ) d x = 0 1 ( 1 ( n 1 ) ! j = 0 n ( n j ) ( 1 ) n j ( a + x + j ) n 1 ln ( a + x + j ) ) d x = 1 ( n 1 ) ! j = 0 n ( n j ) ( 1 ) n j [ 1 n ( a + x + j ) n ln ( a + x + j ) 1 n 2 ( a + x + j ) n ] x = 0 1 = 1 n ! j = 0 n + 1 ( n + 1 j ) ( 1 ) n + 1 j ( a + j ) n ln ( a + j ) 1 n × n ! j = 0 n + 1 ( n + 1 j ) ( 1 ) n + 1 j ( a + j ) n \begin{aligned} J_{n+1}(a) & = \int_0^1 J_n(a+x)\,dx \; = \; \int_0^1 \left( \frac{1}{(n-1)!}\sum_{j=0}^n {n \choose j}(-1)^{n-j}(a+x+j)^{n-1}\ln(a+x+j)\right)\,dx \\ & = \frac{1}{(n-1)!}\sum_{j=0}^n {n \choose j}(-1)^{n-j} \left[\tfrac{1}{n}(a+x+j)^n\ln(a+x+j) - \tfrac{1}{n^2}(a+x+j)^n\right]_{x=0}^1 \\ & = \frac{1}{n!} \sum_{j=0}^{n+1}{n+1 \choose j}(-1)^{n+1-j}(a+j)^n \ln(a+j) - \frac{1}{n\times n!}\sum_{j=0}^{n+1}{n+1 \choose j}(-1)^{n+1-j}(a+j)^n \end{aligned} Now j = 0 N ( N j ) ( 1 ) j ( N j ) M = j = 0 N ( N j ) ( 1 ) N j j M \sum_{j=0}^N {N \choose j}(-1)^j (N-j)^M \; = \; \sum_{j=0}^N {N \choose j}(-1)^{N-j} j^M is equal to the number of surjective maps from a set with M M elements to a set with N N elements, and hence is equal to 0 0 for non-negative integers M < N M < N . Thus it follows that j = 0 n + 1 ( n + 1 j ) ( 1 ) n + 1 j ( a + j ) n = 0 \sum_{j=0}^{n+1}{n+1 \choose j}(-1)^{n+1-j}(a+j)^n \; = \; 0 for all a > 0 a > 0 , and hence J n + 1 ( a ) = 1 n ! j = 0 n + 1 ( n + 1 j ) ( 1 ) n + 1 j ( a + j ) n ln ( a + j ) J_{n+1}(a) \; = \; \frac{1}{n!} \sum_{j=0}^{n+1}{n+1 \choose j}(-1)^{n+1-j}(a+j)^n \ln(a+j) as required. Putting a = 0 a=0 we conclude that J n ( 0 ) = 1 ( n 1 ) ! j = 1 n ( n j ) ( 1 ) n j j n 1 ln j = n j = 1 n ( 1 ) n j j n 1 ln j j ! ( n j ) ! n 2 J_n(0) \; = \; \frac{1}{(n-1)!}\sum_{j=1}^n {n \choose j}(-1)^{n-j} j^{n-1} \ln j \; = \; n \sum_{j=1}^n \frac{(-1)^{n-j} j^{n-1} \ln j}{j! (n-j)!} \hspace{1cm} n \ge 2

As observed elsewhere , we note that n J n ( 0 ) = 0 e 1 2 t ( 2 n sinh 1 2 n t t ) n d t n\,J_n(0) \; =\; \int_0^\infty e^{-\frac12t} \left(\frac{2n\sinh \frac1{2n}t}{t}\right)^n\,dt for all n N n \in \mathbf{N} . Moreover, lim n n J n ( 0 ) = 0 e 1 2 t d t = 2 ( ) \lim_{n \to \infty}n\,J_n(0) \; = \; \int_0^\infty e^{-\frac12t}\,dt \; = \; 2 \hspace{4cm} (\star) Putting these results together, we deduce that lim n n 2 j = 0 n ( 1 ) n j j n 1 ln j j ! ( n j ) ! = lim n n J n ( 0 ) = 2 \lim_{n \to \infty} n^2\sum_{j=0}^n \frac{(-1)^{n-j} j^{n-1} \ln j}{j! (n-j)!} \; =\; \lim_{n \to \infty} n\,J_n(0) \; = \; 2 making the answer 2 \boxed{2} .


Proving the result in ( ) (\star) that n J n ( 0 ) n\,J_n(0) converges to 2 2 as n n \to \infty needs some careful analysis. If we define g ( x ) = x c o t h x 1 ln ( sinh x x ) x > 0 g(x) \; = \; x\mathrm{coth}\,x - 1 - \ln\left(\frac{\sinh x}{x}\right) \hspace{2cm} x > 0 then g ( x ) = cosh x × x sinh x 1 ln ( sinh x x ) 0 x 0 + g(x) \; =\; \cosh x \times \frac{x}{\sinh x} - 1 - \ln\left(\frac{\sinh x}{x}\right) \; \to \; 0 \hspace{2cm} x \to 0+ while g ( x ) = 1 x x c o s e c h 2 x = 1 x [ 1 ( x sinh x ) 2 ] > 0 x > 0 g'(x) \; =\; \frac{1}{x} - x\mathrm{cosech}^2x \; = \; \frac{1}{x}\left[1 - \left(\frac{x}{\sinh x}\right)^2\right] \; > \; 0 \hspace{2cm} x > 0 so we deduce that g ( x ) > 0 g(x) > 0 for all x > 0 x > 0 . If we now define f ( x ) = ( sinh x x ) 1 x x > 0 f(x) \; = \; \left(\frac{\sinh x}{x}\right)^{\frac{1}{x}} \hspace{2cm} x > 0 then we deduce that f ( x ) f ( x ) = 1 x [ c o t h x 1 x ] 1 x 2 ln ( sinh x x ) = g ( x ) x 2 > 0 \frac{f'(x)}{f(x)} \; = \; \frac{1}{x}\Big[\mathrm{coth}\,x - \frac{1}{x}\Big] - \frac{1}{x^2}\ln\left(\frac{\sinh x}{x}\right) \; = \; \frac{g(x)}{x^2} \; > \; 0 for x > 0 x > 0 . Thus f ( x ) f(x) is an increasing function of x x . Thus, for n 2 n \ge 2 and t > 0 t > 0 , f ( t 2 n ) f ( t 4 ) ( 2 n sinh 1 2 n t t ) 2 n t ( 4 sinh 1 4 t t ) 4 t e 1 2 t ( 2 n sinh 1 2 n t t ) n e 1 2 t ( 4 sinh 1 4 t t ) 2 = ( 1 e t ) 2 t 2 \begin{aligned} f\big(\tfrac{t}{2n}\big) & \le f\big(\tfrac{t}{4}\big) \\ \left(\frac{2n \sinh \frac{1}{2n}t}{t}\right)^{\frac{2n}{t}} & \le \left(\frac{4\sinh \frac14t}{t}\right)^{\frac4t} \\ e^{-\frac12t}\left(\frac{2n \sinh \frac{1}{2n}t}{t}\right)^n & \le e^{-\frac12t}\left(\frac{4\sinh \frac14t}{t}\right)^2 \; = \; \frac{(1 - e^{-t})^2}{t^2} \end{aligned} Given this inequality, we can use the Dominated Convergence Theorem to show that lim n n J n ( 0 ) = 2 \lim_{n \to \infty}n\,J_n(0) = 2 .

Nice solution.

Hana Wehbi - 3 years, 12 months ago

@Mark Hennings I was very confused in the middle when I got derivative of Stirling numbers of second kind. And I searched the internet but there seems to be nothing. What could be the possible reason according to you?

Kartik Sharma - 3 years, 12 months ago

Log in to reply

I am not aware that there is a continuous version of the Stirling numbers that can be differentiated!

Mark Hennings - 3 years, 12 months ago

Log in to reply

Yeah. That's how we have defined it. Opens up possibilities though for something like Gamma Function. The limit is surely defined as your solution says.

Kartik Sharma - 3 years, 12 months ago

Log in to reply

@Kartik Sharma It seems there has been some study of generalised Stirling numbers, as here and in the referred papers. One of the more interesting ideas (Flajolet &) seems to define the numbers by integrating along a Hankel contour.

Mark Hennings - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...