Bizarre cosines of gp!

Geometry Level 4

( 1 + cos 2 2 0 ) ( 1 + cos 2 4 0 ) ( 1 + cos 2 8 0 ) \large \left(1+\cos^{2}20^{\circ}\right) \left(1+\cos^{2}40^{\circ}\right) \left(1+\cos^{2}80^{\circ}\right)

If the value of the expression above can be represented in the form a b \dfrac{a}{b} . for coprime positive integers a a and b b , find the value of a + b a+b .


The answer is 261.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Jul 20, 2015

( 1 + cos 2 2 0 ) ( 1 + cos 2 4 0 ) ( 1 + cos 2 8 0 ) = ( 1 + [ 1 + cos 4 0 2 ] ) ( 1 + [ 1 + cos 8 0 2 ] ) ( 1 + ( 1 + cos 16 0 2 ) ) = 1 8 ( 3 + cos 4 0 ) ( 3 + cos 8 0 ) ( 3 + cos 16 0 ) = 1 8 ( 3 + a ) ( 3 + b ) ( 3 + c ) [ Let a = cos 4 0 , b = cos 8 0 , c = cos 16 0 ] = 1 8 [ 27 + 9 ( a + b + c ) + 3 ( a b + b c + c a ) + a b c ] = 1 8 [ 27 + 9 ( 0 ) + 3 ( 3 4 ) + ( 1 8 ) ] [ See Note ] = 197 64 a + b = 197 + 64 = 261 (1+\cos^2{20^\circ})(1+\cos^2{40^\circ})(1+\cos^2{80^\circ}) \\ = \left(1+\left[\dfrac{1+\cos{40^\circ}}{2}\right]\right)\left(1+\left[ \dfrac{ 1 + \cos{ 80^\circ}}{2}\right]\right)\left(1+\left(\dfrac{1+\cos{160^\circ}} {2} \right) \right) \\ = \dfrac{1}{8} (3 + \color{#3D99F6}{\cos{40^\circ}}) (3 + \color{#D61F06} {\cos{ 80 ^\circ}}) (3 + \color{#20A900} {\cos{ 160 ^\circ}}) \\ = \dfrac{1}{8} (3 + \color{#3D99F6}{a}) (3 + \color{#D61F06} {b}) (3 + \color{#20A900}{c}) \quad \quad [\text{Let } \color{#3D99F6}{a = \cos{40^\circ}}, \color{#D61F06} {b = \cos{ 80 ^\circ}}, \color{#20A900} {c = \cos{ 160 ^\circ}}] \\ = \dfrac{1}{8} [27 + 9(\color{#3D99F6}{a+b+c}) + 3(\color{#D61F06} {ab + bc + ca} ) + \color{#20A900} {abc}] \\ = \dfrac{1}{8} \left[27 + 9(\color{#3D99F6}{0}) + 3\left(\color{#D61F06} {-\frac{3}{4}} \right) + \left( \color{#20A900} {-\frac{1}{8}} \right) \right] \quad \quad [\text{See Note}] \\ = \dfrac{197}{64} \quad \quad \Rightarrow a + b = 197 + 64 = \boxed{261}

Note: \text{Note: } From the following identity:

cos 4 0 + cos 8 0 + cos 12 0 + cos 16 0 = 1 2 cos 4 0 + cos 8 0 1 2 + cos 16 0 = 1 2 cos 4 0 + cos 8 0 + cos 16 0 = 0 [ Let x = cos 4 0 ] x + 2 x 2 1 + 8 x 4 8 x 2 + 1 = 0 8 x 3 6 x + 1 = 0 \begin{aligned} \cos{40^\circ} + \cos{80^\circ} \color{#3D99F6} {+ \cos{120^\circ}} + \cos{160^\circ} & = - \frac{1}{2} \\ \cos{40^\circ} + \cos{80^\circ} \color{#3D99F6}{- \frac{1}{2}} + \cos{160^\circ} & = - \frac{1}{2} \\ \Rightarrow \cos{40^\circ} + \cos{80^\circ} + \cos{160^\circ} & = 0 \quad \quad \color{#D61F06} {[ \text{Let } x = \cos{40^\circ} ]} \\ x + 2x^2 - 1 + 8x^4 - 8x^2 + 1 & = 0 \\ 8x^3 - 6x + 1 & = 0 \end{aligned}

The roots to 8 x 3 6 x + 1 = 0 8x^3 - 6x + 1 = 0 are a = cos 4 0 \color{#3D99F6}{a = \cos{40^\circ}} , b = cos 8 0 \color{#D61F06} {b = \cos{ 80 ^\circ}} and c = cos 16 0 \color{#20A900} {c = \cos{ 160 ^\circ}}

{ a + b + c = 0 a b + b c + c a = 3 4 a b c = 1 8 \Rightarrow \begin{cases} \color{#3D99F6}{a+b+c = 0} \\ \color{#D61F06} {ab + bc + ca = - \frac{3}{4}} \\ \color{#20A900} {abc = - \frac{1}{8}}\end{cases}

Moderator note:

Hm, it's not clear to me how your note shows that the roots are as listed. I get that cos 4 0 \cos 40 ^ \circ is a root of the equation because we were making the substitution of x = cos 4 0 x = \cos 40 ^ \circ . How about the other roots?


A much quicker approach to the Note, is to say that "The roots to the equation 4 x 3 3 x = 1 2 4x^3 - 3x = \frac{1}{2} are x = cos 4 0 , cos 8 0 , cos 16 0 x = \cos 40 ^ \circ, \cos 80 ^ \circ, \cos 160 ^ \circ ." Do you see why this is true?

Hint: Let x = cos θ x = \cos \theta .

I see, actually the equation should be 4 x 3 3 x = 1 2 4x^3-3x = -\frac{1}{2} , which is exactly the same as what I have derived 8 x 3 6 x + 1 = 0 8x^3 - 6x + 1 = 0 .

cos 3 θ = 4 cos 3 θ 3 cos θ { cos ( 3 × 4 0 ) = cos 12 0 = 1 2 cos ( 3 × 8 0 ) = cos 24 0 = 1 2 cos ( 3 × 16 0 ) = cos 48 0 = 1 2 \cos{3\theta} = 4\cos^3{\theta} - 3\cos{\theta}\quad \Rightarrow \begin{cases} \cos{(3\times 40^\circ)} = \cos{120^\circ} = - \frac{1}{2} \\ \cos{(3\times 80^\circ)} = \cos{240^\circ} = - \frac{1}{2} \\ \cos{(3\times 160^\circ)} = \cos{480^\circ} = - \frac{1}{2} \end{cases}

Chew-Seong Cheong - 5 years, 10 months ago

How does 18th root of unity help? You have w 18 = 1 w^{18} = 1 , then what?

Pi Han Goh - 5 years, 10 months ago

Log in to reply

ω 18 = 1 e k π 9 i = e 20 k i = 1 \omega^{18} = 1 \Rightarrow e^{\frac{k\pi}{9}i} = e^{20k^\circ i}= 1 . From the Argand's diagram we can observe that.

{ cos 2 0 + cos 6 0 + cos 10 0 + cos 14 0 = 1 2 cos 4 0 + cos 8 0 + cos 12 0 + cos 16 0 = 1 2 \Rightarrow \begin{cases} \cos{20^\circ} + \cos{60^\circ} + \cos{100^\circ} + \cos{140^\circ} = \frac{1}{2} \\ \cos{40^\circ} + \cos{80^\circ} + \cos{120^\circ} + \cos{160^\circ} = -\frac{1}{2} \end{cases}

Chew-Seong Cheong - 5 years, 10 months ago

Log in to reply

How does your cos(20) + cos(80) + cos(120) + cos(160) = -1/2 follow?

Pi Han Goh - 5 years, 10 months ago

Log in to reply

@Pi Han Goh @Pi Han Goh @Chew-Seong Cheong I believe you guys are saying the same thing, just not communicating it clearly.

For the "image", consider the regular 9-gon with a vertex at ( 1 , 0 ) (1,0) . By considering the x-coordinate of the centroid, and pairing up the other vertices that are not ( 1 , 0 ) (1,0) , we get that

0 = 1 + 2 × ( cos 4 0 + cos 8 0 + cos 12 0 + cos 16 0 ) 0 = 1 + 2 \times (\cos 40 ^ \circ + \cos 80^\circ + \cos 120 ^ \circ + \cos 160 ^ \circ )

Similarly, the other equation is obtained by considering the regular 9-gon with a vertex at ( 1 , 0 ) (-1, 0) .

Calvin Lin Staff - 5 years, 10 months ago

@Pi Han Goh I have posted a note to explain it.

Chew-Seong Cheong - 5 years, 10 months ago

No. You can't observe it. The most you can conclude is that you have drawn a regular 18-sided polygon with circumradius 1 and center at origin. There is no indication or hints to conclude the two equations you mentioned.

It's like saying that you've found the golden ratio simply by drawing straight lines.

You should explain it like what Alan did .

If you're feeling lazy to explain, the least you can do is say, k > 0 , k odd n 1 cos ( π k n ) = 1 2 , k > 0 , k even n 1 cos ( π k n ) = 1 2 \displaystyle \sum_{k>0,k \text{ odd}}^{n-1} \cos\left(\frac{\pi k}n\right) = \frac12, \displaystyle \sum_{k>0,k \text{ even}}^{n-1} \cos\left(\frac{\pi k}n\right) =- \frac12 .

Pi Han Goh - 5 years, 10 months ago

Log in to reply

@Pi Han Goh Thanks for the reference. That is how I remember the identity. You should be able to see if it you plot out half of the complex roots. Removing the real root 1. The real part of complex roots = 0. the real part of odd complex roots = 0.5 negate out the real part of even complex = -0.5.

Chew-Seong Cheong - 5 years, 10 months ago

Log in to reply

@Chew-Seong Cheong I don't think that makes sense. Can you show me on the picture for this question ?

Pi Han Goh - 5 years, 10 months ago

Log in to reply

@Pi Han Goh OK. I think I am wrong. But the diagram actually shows the numbers. If the numbers are correct the diagram must be correct. It is just unclear to explain.

Chew-Seong Cheong - 5 years, 10 months ago

Do check my solution as well.. :)

Samarth Kapoor - 5 years, 10 months ago
Pi Han Goh
Jul 20, 2015

Start with cos 2 ( A ) = 1 2 ( cos ( 2 A ) + 1 ) \cos^2(A) = \frac12 (\cos(2A) + 1) , then the trigonometric expression becomes

1 8 ( 3 + cos ( 4 0 ) ) ( 3 + cos ( 8 0 ) ) ( 3 + cos ( 16 0 ) ) \frac18 (3 + \cos(40^\circ))(3 + \cos(80^\circ))(3 + \cos(160^\circ ) )

Note that 40 × 3 = 120 , 80 × 3 = 240 , 160 × 3 = 360 + 120 40 \times 3 =120, 80\times3=240, 160\times3=360 +120 . Consider the triple angle formula cos ( 3 x ) = 4 cos 3 ( x ) 3 cos ( x ) = 1 2 \cos(3x) = 4\cos^3(x) -3\cos(x) = -\frac12 . Then x = 4 0 , 8 0 , 16 0 x = 40^\circ,80^\circ,160^\circ satisfy the previous equation. Let y = cos ( x ) y = \cos(x) , then 8 y 3 6 y + 1 = 0 8y^3-6y + 1 = 0 has roots cos ( 4 0 ) , cos ( 8 0 ) , cos ( 16 0 ) \cos(40^\circ), \cos(80^\circ),\cos(160^\circ) . Equivalently, 8 ( y 3 ) 3 6 ( y 3 ) + 1 = 0 8(y-3)^3-6(y-3) + 1 = 0 has roots cos ( 4 0 ) + 3 , cos ( 8 0 ) + 3 , cos ( 16 0 ) + 3 \cos(40^\circ) + 3, \cos(80^\circ) + 3,\cos(160^\circ) + 3 .

Hence the Vieta's formula, the product in question is 1 8 1 8 ( 8 3 3 + 6 3 + 1 ) = 197 64 \frac18 \cdot -\frac18 (-8\cdot3^3 +6\cdot3 + 1 ) = \boxed{\frac{197}{64}} .

Perfect.. I knew this was coming (converting into cos(2x)).. Do have a look at my solution.. :)

Samarth Kapoor - 5 years, 10 months ago
Tanishq Varshney
Jul 20, 2015

Is there any shorter way, plz post yours

cos 2 x = 1 + cos 2 x 2 \large{\cos ^{2}x=\frac{1+\cos 2x}{2}}

The given expression becomes

Note that all angles are in degrees

1 8 ( 3 cos 20 ) ( 3 + cos 40 ) ( 3 + cos 80 ) \large{\frac{1}{8}\color{#D61F06}{(3-\cos 20)(3+\cos 40)(3+\cos 80)}}

As cos 160 = cos 20 \cos 160=-\cos 20

on expanding

9 cos 20 + 9 cos 40 + 9 cos 80 3 cos 20 cos 40 3 cos 20 cos 80 + 3 cos 80 cos 40 cos 20 cos 40 cos 80 \large{-9\cos 20+9\cos 40+9\cos 80 -\color{#20A900}{3\cos 20 \cos 40-3 \cos 20 \cos 80+3\cos 80 \cos 40}-\color{#3D99F6}{\cos20 \cos 40 \cos 80}}

Now repeated use of some common properties

cos A + cos B = 2 cos ( A + B 2 ) cos ( A B 2 ) \cos A+\cos B=2\cos(\frac{A+B}{2})\cos(\frac{A-B}{2})

cos A cos B = 2 sin ( A + B 2 ) sin ( B A 2 ) \cos A-\cos B=2\sin(\frac{A+B}{2})\sin(\frac{B-A}{2})

2 cos A cos B = cos ( A + B ) + cos ( A B ) 2\cos A \cos B=\cos(A+B)+\cos(A-B)

4 cos ( 60 A ) cos ( A ) cos ( 60 + A ) = cos 3 A 4\cos(60-A)\cos (A) \cos(60+A)=\cos 3A

sin 30 = 0.5 \sin 30=0.5 and cos 120 = 0.5 \cos 120=-0.5

sin A = cos ( 90 A ) \sin A=\cos (90-A)

Now we have

9 cos 80 + 9 cos 80 3 2 ( ( cos 60 + cos 20 ) + ( cos 100 + cos 60 ) ( cos 120 + cos 40 ) ) 1 4 cos 60 + 27 \large{-9\cos 80+9\cos 80-\color{#20A900}{\frac{3}{2}((\cos 60+\cos 20)+(\cos100+\cos 60)-(\cos 120+\cos 40))}-\color{#3D99F6}{\frac{1}{4}\cos 60}+27}

Collecting cos 60 \cos 60 terms and reaaranging

( 9 2 1 4 ) cos 60 + 27 + 3 2 ( cos 40 cos 20 cos 100 ) \large{(-\frac{9}{2}-\frac{1}{4})\cos 60+27+\frac{3}{2}(\cos 40-\cos 20-\cos 100)}

197 8 + 3 2 ( cos 40 2 cos 60 cos 40 ) \large{\frac{197}{8}+\frac{3}{2}(\cos 40-2\cos 60 \cos 40)}

=197/8

The final answer is

197 64 \huge{\boxed{\frac{197}{64}}}

Samarth Kapoor
Jul 20, 2015

I\quad would\quad be\quad happy\quad if\quad I\quad find\quad a\quad shorter\quad way\quad to\quad solve\quad this.This\quad is\quad how\quad I\quad made\quad the\quad question:\ Consider\quad the\quad equation:\sin (3x)=\sin (30).\quad This\quad gives\quad 3\sin \theta -4\sin ^{ 3 } \theta =1/2\quad Now,\quad \sin (10),\sin (130)\quad and\quad \sin (250)\quad satisfy\quad the\quad given\quad equation.\ As\quad they\quad are\quad all\quad distinct\quad numbers,\quad they\quad must\quad be\quad the\quad 3\quad roots\quad of\quad the\quad cubic\quad equation\quad 3x-4x^{ 3 }=1/2\quad which\quad is\quad 8x^{ 3 }-6x+1=0.\ So,\quad k{ x-sin(10)} { x-sin(130)} { x-sin(250)} =8x^{ 3 }-6x+1\quad and\quad k=8\quad by\quad comparing\quad the\quad coefficient\quad of\quad x^{ 3 },\quad k=8.\ Put\quad x=i\quad and\quad x=(-i)\quad (where\quad i^{ 2 }=(-1)).\quad Multiply\quad both\quad the\quad relations\quad to\quad get\quad the\quad answer.

Please check the image.

Samarth Kapoor - 5 years, 10 months ago

Nicely done dude

Tanishq Varshney - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...