Polylogs in Integrals

Calculus Level 5

0 1 Li 3 ( x ) ln ( 1 x ) x d x \large \int_0^1 \dfrac{ \text{Li}_3(x) \ln(1-x)} x \, dx

The value of the integral above can be expressed in the form of

A B π C ζ ( D ) E F π G ζ ( H ) , \dfrac AB \pi^C \zeta (D) - \dfrac EF \pi^G \zeta (H) \; ,

where A , B , C , D , E , F , G , H A,B,C,D,E,F,G,H are non-negative integers, where gcd ( A , B ) = gcd ( E , F ) = 1 \gcd(A,B) = \gcd(E,F) = 1 .

Find A + B + C + D + E + F + G + H A+B+C+D+E+F+G+H .

Notations :

  • Li n ( a ) { \text{Li} }_{ n }(a) denotes the polylogarithm function, Li n ( a ) = k = 1 a k k n . { \text{Li} }_{ n }(a)=\displaystyle\sum _{ k=1 }^{ \infty }{ \frac { { a }^{ k } }{ { k }^{ n } } }.

  • ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aditya Kumar
Mar 16, 2016

I = 0 1 L i 3 ( x ) ln ( 1 x ) x d x I=\int _{ 0 }^{ 1 }{ \frac { { Li }_{ 3 }\left( x \right) \ln { \left( 1-x \right) } }{ x } dx }

Now, on using the definition of polylogarithms, we can write it as: I = k = 1 [ 1 k 3 0 1 x k 1 ln ( 1 x ) d x ] I=\sum _{ k=1 }^{ \infty }{ \left[ \frac { 1 }{ { k }^{ 3 } } \int _{ 0 }^{ 1 }{ { x }^{ k-1 }\ln { \left( 1-x \right) } dx } \right] }

Now, I'll use the following identity (readers can prove it by repeated use of IBP): x k 1 ln ( 1 x ) d x = 1 x k k ln ( 1 x ) + 1 k j = 1 k x j j -\int { { x }^{ k-1 }\ln { \left( 1-x \right) } dx } =\frac { 1-{ x }^{ k } }{ k } \ln { \left( 1-x \right) } +\frac { 1 }{ k } \sum _{ j=1 }^{ k }{ \frac { { x }^{ j } }{ j } }

Now on plugging it into the main equation and on applying the limits, we get: I = k = 1 j = 1 k 1 k 4 j I=-\sum _{ k=1 }^{ \infty }{ \sum _{ j=1 }^{ k }{ \frac { 1 }{ { k }^{ 4 }j } } }

Now, on using the definition of harmonic numbers, I'll re-write it as: I = k = 1 H k k 4 I=-\sum _{ k=1 }^{ \infty }{ \frac { { H }_{ k } }{ { k }^{ 4 } } }

We can evaluate this using Generalised Harmonic Sum which I learnt from here .

So the final answer comes out to be: I = π 2 6 ζ ( 3 ) 3 ζ ( 5 ) I=\frac { { \pi }^{ 2 } }{ 6 } \zeta \left( 3 \right) -3\zeta \left( 5 \right) \\

In this question, A = 1 , B = 6 , C = 2 , D = 3 , E = 3 , F = 1 , G = 0 , H = 5 A=1, B=6, C=2, D=3, E=3,F=1,G=0,H=5 .

Therefore, A + B + C + D + E + F + G + H = 21 \boxed{A+B+C+D+E+F+G+H=21}

Simply do it like this...

I = 0 1 n = 1 f r a c 1 n 3 0 1 log ( 1 x ) x n 1 d x \ = lim p 0 \del \del ( p ) 0 1 ( ( 1 x ) p ) x n 1 n = 1 ( inf ) 1 n 3 d x \ = s u m n = 1 ( inf ) 1 n 3 lim p 0 \del \del ( p ) γ ( p + 1 ) × γ ( n ) γ ( p + n + 1 ) I = \int_{0}^1 \sum_{n=1}^{\infty} frac{1}{n^3} \int_{0}^1 \log(1-x) x^{n-1} dx \ = \lim_{p^0} \frac{\del}{\del (p)} \int_{0}^1 ((1-x)^p) x^{n-1} \sum_{n=1}^(\inf) \frac{1}{n^3} dx \ = \ sum_{n=1}^(\inf) \frac{1}{n^3} \lim_{p^0} \frac{\del}{\del (p)} \frac{\gamma(p+1) \times \gamma(n)}{\gamma(p+n+1)}

We get , after some simple simplification , = n = 1 ( inf ) d i g a m m a ( n + 1 ) + \eulergamma n = n = 1 ( inf ) 1 n 3 H n n = \sum_{n=1}^(\inf) \frac{ - digamma(n+1) + \eulergamma}{n} = - \sum_{n=1}^(\inf) \frac{1}{n^3} \frac{H_n}{n}

As we know ,

\H_n = \digamma(n+1) + \eulergamma

Using this , we get ,

= n = 1 ( inf ) H n n 4 = - \sum_{n=1}^(\inf) \frac{H_n}{n^4}

As we know ,

  \\\[  \\sum\_\{n=1\}^\(\\inf\) \\frac\{H\_n\}\{n^4\} =  3 \\times \\zeta\(5\)  \-  \\zeta\(2\) \\times \\zeta\(3\)\\\]

Using this , we get ,

I = ζ ( 2 ) × ζ ( 3 ) 3 × ζ ( 5 ) I = \zeta(2) \times \zeta(3) - 3 \times \zeta(5)

So , we can directly compare given question and answer , we finally get ,

A + B + C + D + E + F + G + H = 21

                                      (Q.E.D)

Shivam Sharma - 4 years, 2 months ago
Naren Bhandari
Oct 23, 2020

0 1 Li 3 ( x ) ln ( 1 x ) x d x = k 1 1 k 3 0 1 x k 1 ln ( 1 x ) d x = k 1 H k k 4 \int_0^1\frac{\operatorname{Li}_3(x)\ln(1-x)}{x}dx=\sum_{k\geq 1}\frac{1}{k^3}\color{#D61F06}{\int_0^1 x^{k-1}\ln(1-x)dx}=-\sum_{k\geq 1}\frac{H_k}{k^4} the integral highlighted with red which I solved here in MSE without derivatives of beta function. To evaluate the last sum we use generalized Euler sum (equation 21) giving us k 1 H k k 4 = π 2 6 ζ ( 3 ) 3 ζ ( 5 ) -\sum_{k\geq 1 }\frac{H_k}{k^4}= \frac{\pi^2}{6}\zeta(3)-3\zeta(5)

Ah I see that you're active on MSE too. Hi there!

Pi Han Goh - 7 months, 3 weeks ago

Log in to reply

I also have seen some of your postings on MSE however, you seems less active there. A friend of mine , Ali Shather ( most Harmonic problem poster on MSE) suggested me to participate on MSE. :D Are you on facebook sir? I guess you dont mind. :D

Naren Bhandari - 7 months, 3 weeks ago

Log in to reply

Yeah, I don't particularly fancy MSE as there's plenty of moderators silencing users for not following a strict arbitrary rule.

But I do make comments here and there, which as you know, does not "score me any points".

No, I don't use Facebook.

Pi Han Goh - 7 months, 3 weeks ago

Log in to reply

@Pi Han Goh I see. Thank you for the reply. :)

Naren Bhandari - 7 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...