Calculator will blow up

Find the number of trailing zeroes in 100000 ! 100000 ! .

\,

Notation : ! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 24999.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: Trailing Number of Zeros

To find the trailing zeroes we use a simple method. \large \displaystyle \text{To find the trailing zeroes we use a simple method.}

f ( 100000 ) = i = 1 k 100000 5 i \large \displaystyle f(100000) = \color{#1E93A5}{\sum_{i=1}^k \left\lfloor{\frac{100000}{5^i}}\right\rfloor}

100000 5 = 20000 \large \displaystyle \left\lfloor\frac{100000}{5}\right\rfloor = \color{#D61F06}{20000}

100000 5 2 = 4000 \large \displaystyle \left\lfloor\frac{100000}{5^2}\right\rfloor = \color{#3D99F6}{4000}

100000 5 3 = 800 \large \displaystyle \left\lfloor\frac{100000}{5^3}\right\rfloor = \color{#20A900}{800}

100000 5 4 = 160 \large \displaystyle \left\lfloor\frac{100000}{5^4}\right\rfloor = \color{#69047E}{160}

100000 5 5 = 32 \large \displaystyle \left\lfloor\frac{100000}{5^5}\right\rfloor = \color{magenta}{32}

100000 5 6 = 6.4 = 6 \large \displaystyle \left\lfloor\frac{100000}{5^6}\right\rfloor = \left\lfloor\color{#EC7300}{6.4}\right\rfloor = \color{#EC7300}{6}

100000 5 7 = 1.28 = 1 \large \displaystyle \left\lfloor\frac{100000}{5^7}\right\rfloor = \left\lfloor\color{#624F41}{1.28}\right\rfloor = \color{#624F41}{1}

100000 5 8 = 0 \large \displaystyle \left\lfloor\frac{100000}{5^8} \right\rfloor = \color{cyan}{0}

So total number of trailing zeroes = 20000 + 4000 + 800 + 160 + 32 + 6 + 1 = 24999 . \large \displaystyle \text{So total number of trailing zeroes} = \color{#D61F06}{20000} + \color{#3D99F6}{4000} + \color{#20A900}{800} + \color{#69047E}{160} + \color{magenta}{32} + \color{#EC7300}{6} + \color{#624F41}{1} = \color{royalblue}{\boxed{24999}}.


Nice (+1/2), neat(+1/2) = good solution(+1)

Ashish Menon - 5 years ago

Log in to reply

Lol. Thank You!

Why don't u give Nice(+1), Neat (+1) = Good Solution (+2)

Samara Simha Reddy - 5 years ago

Log in to reply

Because I have only one right thumb. I give likes only by putting up my right thumb and not my left thumb. So, I cant give (+2). XD Moreover, I can give only 1 upvote ʕ•ٹ•ʔ

Ashish Menon - 5 years ago

Log in to reply

@Ashish Menon Haha! ¨ \huge \ddot\smile Fine!

Samara Simha Reddy - 5 years ago

Log in to reply

@Samara Simha Reddy Next time, be a little kind to give us relatively small numbers, as this took me forever :P

Swapnil Das - 5 years ago

Log in to reply

@Swapnil Das Sure! U say any number I ll publish it.

Samara Simha Reddy - 5 years ago

Log in to reply

@Samara Simha Reddy Yes, as soon as I reach home XD

Ashish Menon - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...