Calculus 2

Calculus Level 4

lim x 0 cos x cos x 3 sin 2 x \large \lim_{x\to0} \dfrac{ \sqrt{\cos x} - \sqrt[3]{\cos x}}{\sin^2 x}

The limit above has a closed form. Find the value of this closed form.

Give your answer to 3 decimal places.


The answer is -0.0833.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jun 15, 2016

Call the limit W \mathfrak W . Use sin 2 x = 1 cos 2 x \color{#3D99F6}{\small{\sin^2 x=1-\cos^2x}} followed by substituting cos x = t 6 \color{#3D99F6}{\small{\cos x=t^6}} .

W = lim t 1 t 3 t 2 t 2 1 ( t 1 ) 1 t 12 = lim t 1 1 ( 1 t 12 1 t ) \large \mathfrak W=\displaystyle\lim_{t\to 1}\dfrac{\overbrace{t^3-t^2}^{\overbrace{t^2}^1(t-1)}}{1-t^{12}}=-\displaystyle\lim_{t\to 1}\dfrac{1}{\left(\color{#D61F06}{\frac{1-t^{12}}{1-t}}\right)}

Using sum of GP denominator (i.e 1 t 12 1 t \color{#D61F06}{\frac{1-t^{12}}{1-t}} ) is equal to 1 + t + t 2 + + t 11 \color{#D61F06}{1+t+t^2+\cdots+t^{11}} . As t 1 t\to 1 this tends to 12 12 ( Alternately you can use Lhopital Rule to get 12 t 11 t \dfrac{-12t^{11}}{-t} ) . Hence,

W = 1 12 0.833 \large \mathfrak W=\frac{-1}{12}\approx \boxed{\color{#20A900}{-0.833}}

Without doing any substitution , you can directly use L hospital's Rule .

lim x 0 cos x cos x 3 sin 2 x lim x 0 1 2 ( cos x ) 1 2 sin x 1 3 ( cos x ) 2 3 sin x 2 sin x cos x 1 3 1 2 2 = 1 12 \lim_{x \to 0}\dfrac{\sqrt{\cos{x}}-\sqrt[3]{\cos{x}} }{\sin^2{x}} \\\lim_{x \to 0}\dfrac{\dfrac{1}{2(\cos{x})^\frac12}\cdot - \cancel{\sin{x}}-\dfrac{1}{3(\cos{x})^{\frac23}}\cdot - \cancel{\sin{x}} }{2\cdot \cancel{\sin{x}}\cdot\cos{x}} \\ \implies \dfrac{\dfrac13-\dfrac12}{2} = \boxed{-\dfrac1{12}}

Sabhrant Sachan - 5 years ago

Log in to reply

Nice.... Obviously we can always use Lhopital rule directly on 0 / 0 0/0 forms but in this case using Lhopital directly will require pen and paper ( at least for me) ..... But I was so lazy to grab one so... :-)

Rishabh Jain - 5 years ago

Log in to reply

I wonder you did that substitution in your mind.

Akshay Yadav - 4 years, 12 months ago

Log in to reply

@Akshay Yadav And that's why I bothered to write a 'non pen and paper' solution.. :-)

Rishabh Jain - 4 years, 12 months ago

There is one slight error, sin 2 ( x ) = 1 cos 2 ( x ) \sin^2(x)=1-\cos^2(x) .

Akshay Yadav - 4 years, 12 months ago

Log in to reply

Thanks... Corrected

Rishabh Jain - 4 years, 12 months ago

I missed because of -tive sign.
L e t C o s 1 / 6 x = t . L = lim x 0 cos x cos x 3 sin 2 x = lim t 0 t 3 t 2 1 t 12 = lim t 0 t 2 ( t 1 ) 1 t 12 B u t 1 t 12 = ( 1 + t 6 ) ( 1 + t 3 ) ( 1 t ) ( 1 + t + t 2 ) . L = 1 ( 1 ) 2 2 1 3 = 1 12 = 0.833333. Let~Cos^{1/6}x=t.~~ \\ \implies~L=\large \lim_{x\to0} \dfrac{ \sqrt{\cos x} - \sqrt[3]{\cos x}}{\sin^2x}\\ =\large \lim_{t\to0} \dfrac{ t^3 - t^2}{1-t^{12}}= \lim_{t\to0} \dfrac{ t^2(t - 1)}{1-t^{12}} \\ But~1- t^{12}=(1+t^6)(1+t^3)(1-t)(1+t+t^2).\\ \therefore~L=\dfrac{1*(-1)}{2*2*1*3}= - \dfrac 1 {12}= - 0.833333.

Niranjan Khanderia - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...