Calvin learns Pythagorean triplets!

Algebra Level 2

( 3 3 + 4 3 + 5 3 ) 4 3 \Large{(3^3+4^3+5^3)^{\frac{4}{3}}}

Once Calvin learnt the famous Pythagoras Theorem and he came to know about the triplet ( 3 , 4 , 5 ) (3,4,5) . So instead of squaring them , he cubed them to find an expression below. So what was the value of the above expression that Calvin had found?


Click here for full set .


The answer is 1296.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Rohit Ner
Jun 18, 2015

( 3 3 + 4 3 + 5 3 ) 4 3 = ( 3. 3 2 + 4. 4 2 + 5. 5 2 ) 4 3 = ( 4 2 + 3. 5 2 + 5. 5 2 ) 4 3 = ( 4 2 + 8. 5 2 ) 4 3 = ( 16 + 200 ) 4 3 = 21 6 4 3 = 1296 \begin{aligned}(3^3+4^3+5^3)^{\frac{4}{3}} & =(3.3^2+4.4^2+5.5^2)^{\frac{4}{3}} \\ & = (4^2+3.5^2+5.5^2)^{\frac{4}{3}} \\ & =(4^2+8.5^2)^{\frac{4}{3}} \\ & =(16+200)^{\frac{4}{3}} \\ & =216^{\frac{4}{3}} \\ & \Huge{\color{#3D99F6}{=\boxed{1296}}}\end{aligned}

Moderator note:

Yes correct. Isn't the equation 3 3 + 4 3 + 5 3 = 6 3 3^3 + 4^3 + 5^3= 6^3 beautiful?

Sorry, could you explain me please what you did on step two?

Esteban Vasquez Giraldo - 5 years, 12 months ago

Log in to reply

By Pythagoras Theorem, 3 2 + 4 2 + 5 2 3^2 + 4^2 + 5^2 , so 3 3 2 + 4 4 2 = 3 3 2 + 3 4 2 + 4 2 = 3 ( 3 2 + 4 2 ) + 4 2 = 3 5 2 + 4 2 3\cdot 3^2 + 4 \cdot 4^2 = 3\cdot 3^2 + 3 \cdot 4^2 + 4^2 = 3(3^2+ 4^2) + 4^2 = 3\cdot 5^2 + 4^2 .

Pi Han Goh - 5 years, 12 months ago

Log in to reply

Thank you!

Esteban Vasquez Giraldo - 5 years, 12 months ago

Sorry, in some reason i still can't understand. Can you explain it with more detail ?

Daniel Sugihantoro - 5 years, 9 months ago

Log in to reply

@Daniel Sugihantoro Which part?

Pi Han Goh - 5 years, 9 months ago

Log in to reply

@Pi Han Goh 3 x 3^2 + 4 x 4^2 = 3 x 4^2 + 3 x 4^2 + 4^2

how could it be ?

Daniel Sugihantoro - 5 years, 8 months ago

In response to Challenge Master : yeah it is ! Are there more such quadruplets ?

raman rai - 5 years, 11 months ago

thanks bro

(3^3+4^3+5^3)^4/3 =(27+64+125)^4/3 =(216)^4/3 =725594112

Habib Musabbir - 5 years, 11 months ago

( 3 3 + 4 3 + 5 3 ) 4 3 = ( 3. 3 2 + 4. 4 2 + 5. 5 2 ) 4 3 = ( 4 2 + 3. 5 2 + 5. 5 2 ) 4 3 = ( 4 2 + 8. 5 2 ) 4 3 = ( 8.2 + 8.25 ) 4 3 = ( 8.27 ) 4 3 = ( 2.3 ) 4 = 6 4 = 1296 \begin{aligned}(3^3+4^3+5^3)^{\frac{4}{3}} & =(3.3^2+4.4^2+5.5^2)^{\frac{4}{3}} \\ & = (4^2+3.5^2+5.5^2)^{\frac{4}{3}} \\ & =(4^2+8.5^2)^{\frac{4}{3}} \\ & =(8.2+8.25)^{\frac{4}{3}} \\ & =(8.27)^{\frac{4}{3}} \\ & =(2.3)^{4} \\ & = 6^{4} \\ & \Huge{\color{#3D99F6}{=\boxed{1296}}}\end{aligned}

Andi Setiawan - 5 years, 9 months ago
Rama Devi
Jun 22, 2015

It can be noticed that 3 3 + 4 3 + 5 3 = 6 3 3^3+4^3+5^3=6^3 . Therefore the answer is 6 4 6^4 , which is 1296 1296

( 3 3 + 4 3 + 5 3 ) 4 3 = ( 27 + 64 + 125 ) 4 3 = ( 216 ) 4 3 = ( 6 3 ) 4 3 = ( 6 ) 4 = 1296 \Large{(3^3+4^3+5^3)^{\frac{4}{3}}}\\= \Large{(27+64+125)^{\frac{4}{3}}}\\=\Large{(216)^{\frac{4}{3}}}=\Large{(6^{3})^{\frac{4}{3}}}=\Large(6)^{4} =\Large{1296}

Jesse Nieminen
Jun 23, 2015

(3^3 + 4^3 + 5^3)^4/3

= ((3)^3 + (3+1)^3 + (3+2)^3)^4/3

= ((3^3) + (3^3 + 3 * 3^2 + 3 * 3 + 1) + (3^3 + 6 * 3^2 + 12 * 3 + 8))^4/3

= (3 * 3^3 + 9 * 3^2 + 15 * 3 + 9)^4/3

= (9 * 3^2 + 9 * 3^2 + 5 * 3^2 + 3^2)^4/3

= (24 * 3^2)^4/3

= (2^3 * 3^3)^4/3

= (6^3)^4/3

= 6^4

= 1296

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...