Find the value of − sin 2 1 ∘ + sin 2 2 ∘ − sin 2 3 ∘ + … + sin 2 8 8 ∘ − sin 2 8 9 ∘ + sin 2 9 0 ∘
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
It was really a 30 seconds ques... :D
Please describe the solution completely to me I'm not so good in trigonometry
Log in to reply
Well basically to solve this type of problems you need to know a couple things. 1.How to change sin to cos, csc to sec and tan to cot. 2.Some common trig identities.
For this one; note that, (1)If 0<=a<=90 than sin (90-a)=cos a (2)and: sin^α+cos^2 α=1
sin(89)=sin(90-1)=cos(1) ,therefore sin^2 (89)=cos^2 (1) sin(88)=cos(2) 》sin^2(88)=cos^2(2) . . . sin(46)=cos(44) 》 sin^2(46)=cos^2(44) Clearly, there is no need to change further than sin(46).
Substitude back to the question, group it, use(2) than simplify. After the cancelIation, it is not hard to see that only -sin^2 (45)+sin^2 (90) are the only thing left.
-1/2+1=1/2 and we are done.
Log in to reply
Thanks Pozz for your explanation.
Log in to reply
@Chew-Seong Cheong – Thank you very much I got what you've explained me in the post
As sin^2(A) = cos^2(90-A), and sin^2(A) + cos^2(A) = 1, only sin^2(45) is left
s i n ( x ) = c o s ( 9 0 − x ) . Therefore, this can be rewritten as − s i n 2 ( 1 ° ) + s i n 2 ( 2 ° ) − s i n 2 ( 3 ° ) + . . . − s i n 2 ( 4 5 ° ) − c o s 2 ( 1 ° ) + c o s 2 ( 2 ° ) − c o s 2 ( 3 ° ) + . . . + c o s 2 ( 4 4 ° ) Since s i n 2 ( x ) + c o s 2 ( x ) = 1 , we have − 1 + 1 − 1 + . . . + 1 − s i n 2 ( 4 5 ° ) + s i n 2 ( 9 0 ° ) = − s i n 2 ( 4 5 ° ) + s i n 2 ( 9 0 ° ) = − ( 2 2 ) 2 + ( 1 ) 2 = − 2 1 + 1 = 2 1
Problem Loading...
Note Loading...
Set Loading...
Let's make use of the fact that sin ( x ) = cos ( 9 0 ∘ − x ) . For example, sin ( 1 ∘ ) = cos ( 8 9 ∘ ) and so on. Thus, we can write
− sin 2 1 ∘ + sin 2 2 ∘ − sin 2 3 ∘ + . . . + sin 2 8 8 ∘ − sin 2 8 9 ∘ + sin 2 9 0 ∘ = − sin 2 1 ∘ − sin 2 8 9 ∘ + sin 2 2 ∘ + sin 2 8 8 ∘ − sin 2 3 ∘ − sin 2 8 7 ∘ + . . . . . . − sin 2 4 3 ∘ − sin 2 4 7 ∘ + sin 2 4 4 ∘ + sin 2 4 6 ∘ − sin 2 4 5 ∘ + sin 2 9 0 ∘ = − sin 2 1 ∘ − cos 2 1 ∘ + sin 2 2 ∘ + cos 2 2 ∘ − sin 2 3 ∘ − cos 2 3 ∘ + . . . . . . − sin 2 4 3 ∘ − cos 2 4 3 ∘ + sin 2 4 4 ∘ + cos 2 4 4 ∘ − sin 2 4 5 ∘ + sin 2 9 0 ∘ = − 1 + 1 − 1 . . . − 1 + 1 − ( 2 1 ) 2 + 1 = − 2 2 + 2 2 − 2 1 + 1 = 2 1