Can this be really done?

Calculus Level 5

m = 1 n = 1 m 2 n 3 m ( n 3 m + m 3 n ) \large \sum_{m=1}^\infty \sum_{n=1}^\infty \frac{m^2 n}{3^m(n \cdot 3^m + m \cdot 3^n) }

If the series above equals to α β \frac { \alpha }{ \beta } for coprime positive integers α , β \alpha, \beta , find β α \beta - \alpha .

Try this set.


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Kumar
May 17, 2015

m = 1 n = 1 m 2 n 3 m ( n . 3 m + m . 3 n ) = 1 2 [ m = 1 n = 1 m 2 n 3 m ( n . 3 m + m . 3 n ) + m = 1 n = 1 n 2 m 3 n ( n . 3 m + m . 3 n ) ] = 1 2 [ m = 1 n = 1 m n 3 m + n ] = 1 2 [ m = 1 m 3 m ] 2 = 9 32 \sum _{ m=1 }^{ \infty }{ \sum _{ n=1 }^{ \infty }{ \frac { { m }^{ 2 }n }{ { 3 }^{ m }(n.{ 3 }^{ m }+m.{ 3 }^{ n }) } } } =\quad \frac { 1 }{ 2 } \left[ \sum _{ m=1 }^{ \infty }{ \sum _{ n=1 }^{ \infty }{ \frac { { m }^{ 2 }n }{ { 3 }^{ m }(n.{ 3 }^{ m }+m.{ 3 }^{ n }) } } } +\sum _{ m=1 }^{ \infty }{ \sum _{ n=1 }^{ \infty }{ \frac { { n }^{ 2 }m }{ { 3 }^{ n }(n.{ 3 }^{ m }+m.{ 3 }^{ n }) } } } \right] \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \frac { 1 }{ 2 } \left[ \sum _{ m=1 }^{ \infty }{ \sum _{ n=1 }^{ \infty }{ \frac { mn }{ { 3 }^{ m+n } } } } \right] \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \frac { 1 }{ 2 } { \left[ \sum _{ m=1 }^{ \infty }{ \frac { m }{ { 3 }^{ m } } } \right] }^{ 2 }\quad \quad \quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\frac { 9 }{ 32 } \quad \quad \quad

I have tried limit test and have found series diverges :(

Ela Marinić-Kragić - 5 years, 11 months ago

Log in to reply

@Ela Marinić-Kragić I don't think so this is a limits question. It's a normal summation.

Aditya Kumar - 5 years, 10 months ago

Can you please elaborate your solution?

Kïñshük Sïñgh - 6 years ago

Log in to reply

What part of the solution do u want to be elaborated?

Aditya Kumar - 6 years ago

Log in to reply

Just curious to know how did u interchange m with n, and how do you know that the sum will be equal

Deep seth - 5 years, 9 months ago

Log in to reply

@Deep Seth Since the sum of m and in is symmetric, we can always interchange them.

Aditya Kumar - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...