But They're Integers!

Algebra Level 4

For x , y , z 0 x,y,z \ge 0 , where x , y , z x,y,z are integers and x + y + z = 11 x+y+z=11 , find the maximum of x y z + x y + y z + z x xyz+xy+yz+zx


The answer is 88.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Adarsh Kumar
Nov 15, 2014

Assuming that none of x , y , z = 0 x,y,z=0 because we are trying to find the maximum value.On first sight I thought that x y z + x y + y z + z x xyz+xy+yz+zx has a relation to ( x + 1 ) ( y + 1 ) ( z + 1 ) (x+1)(y+1)(z+1) and it did.From A . M G . M A.M\geq G.M we have : ( x + 1 ) + ( y + 1 ) + ( z + 1 ) 3 [ ( x + 1 ) ( y + 1 ) ( z + 1 ) 3 ] :\\\dfrac{(x+1)+(y+1)+(z+1)}{3}\geq [\sqrt[3]{(x+1)(y+1)(z+1)}] ,this simplifies to ( 14 3 ) 3 ( x y z + x y + y z + z x + 11 + 1 ) ( 14 3 ) 3 12 ( x y z + x y + y z + z x ) . (\dfrac{14}{3})^{3}\geq (xyz+xy+yz+zx+11+1)\\ \Rightarrow (\dfrac{14}{3})^{3}-12\geq(xyz+xy+yz+zx).

So, the maximum possible value with real x , y , z x,y,z is 89.62, where x = y = z x=y=z , but given that x , y , z x,y,z are integers, we will plug the closest possible x , y , z x,y,z , which is 3 , 4 , 4 3,4,4 to get the maximum as 88 \boxed{88} .

Evaluating the last expression we get 89.629 89.629 @saivenkatesh.

Adarsh Kumar - 6 years, 7 months ago

Log in to reply

Well i have edited x,y,z are integees so it is 88

Sai Venkatesh - 6 years, 7 months ago

Log in to reply

Yeah! Now there is no ambiguity!

Adarsh Kumar - 6 years, 6 months ago

Log in to reply

@Adarsh Kumar Note that your solution is still incomplete, because it doesn't explain why the sum cannot be 89.

With the restriction to integers, you will need a different argument.

Calvin Lin Staff - 6 years, 6 months ago

I edited your solution accordingly @Adarsh Kumar . BTW Nice use of AM-GM.

Satvik Golechha - 6 years, 7 months ago

Log in to reply

Yeah!Thanx!!

Adarsh Kumar - 6 years, 6 months ago

That is quite hard to guess. So, I think this can also be helpful -

x y z + x y + y z + z x M xyz + xy + yz + zx \le M

and we have to find this M M

x + y + z 3 x y z 3 x + y + z \geq 3 \sqrt [ 3 ]{ xyz }

x y z ( x + y + z 3 ) 3 xyz \le {(\frac{x + y + z}{3})}^{3}

Also, 3 ( x y + y z + z x ) ( x + y + z ) 2 3(xy + yz + zx) \le {(x+y+z)}^{2}

x y + y z + z x ( x + y + z ) 2 3 xy + yz + zx \le \frac{{(x+ y + z)}^{2}}{3}

Now adding and putting values and the same answer you get.

Kartik Sharma - 6 years, 6 months ago
Chew-Seong Cheong
Feb 10, 2015

Perhaps, this is more straightforward.

( x + y + z ) 2 = x 2 + y 2 + z 2 + 2 ( x y + y z + z x ) (x+y+z)^2 = x^2+y^2+z^2 + 2(xy+yz+zx)

x y z + x y + y z + z x = x y z + ( x + y + z ) 2 ( x 2 + y 2 + z 2 ) 2 \Rightarrow xyz + xy+yz+zx = xyz + \dfrac {(x+y+z)^2 - (x^2+y^2+z^2)} {2}

= x y z + 121 2 x 2 + y 2 + z 2 2 x y z + 121 2 3 2 ( x y z 3 ) 2 \quad = xyz + \dfrac {121}{2} - \dfrac { x^2+y^2+z^2} {2} \le xyz + \frac {121}{2} - \frac {3}{2} \left( \sqrt [3] {xyz} \right)^2

From x + y + z 3 = 11 3 x y z 3 \dfrac {x+y+z} {3} = \frac {11}{3} \ge \sqrt [3] {xyz} , therefore,

x y z + x y + y z + z x ( 11 3 ) 3 + 121 2 3 2 ( 11 3 ) 2 = 89.62962963 \Rightarrow xyz + xy+yz+zx \le \left( \frac {11}{3} \right)^3 + \frac {121}{2} - \frac {3}{2} \left( \frac {11}{3} \right)^2 = 89.62962963

And the nearest integer solution is 88 \boxed{88} .

Edwin Gray
Aug 26, 2018

Let z = 11 - x - y. Then xyz + xy + yz + zx = xy(11 - x - y) + xy + y(11 - x - y) + x(11 - x - y). Defining this as f(x,y), df/dx = 11y - 2xy - y^2 + 11 - 2x - y = 0 and equations, 12(y - x) = (y - x)(y + x). Either x = y, or x + y = 12. If x + y = 12, z = -1, which violates the problem conditions, so x = y. Consider the following table: x y z xyz xy yz zx sum --- --- ---- -------- ----- ----- ------ ------- 1 1 9 9 1 9 9 28 2 2 7 28 4 14 14 60 3 3 5 45 9 15 15 84 4 4 3 48 16 12 12 88 5 5 1 25 25 5 5 60 Ed Gray

Incredible Mind
Feb 10, 2015

i answered by instinct (4,3,4)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...