Can we call this Reuleaux Square?

Geometry Level 5

D E F G DEFG is a square. Four quarter circles are drawn with D , E , F , D, \space E, \space F, and G G as the center and D G , E D , F E , DG, \space ED, \space FE, and G F GF as the radius. If D E = 4 cm DE = 4 \space \text{cm} , find the area of white region ( in cm 2 \text{cm}^2 ).

The answer is in the form a b c π d e a - \frac{b}{c} \pi - d \sqrt{e} , where a , b , c , d , e a, b, c, d, e are positive integers, gcd ( b , c ) = 1 \gcd(b,c) = 1 , and e e isnt' divisible by the square of a prime. Find a + b + c + d + e a + b + c + d + e .

Bonus: 1. 1. Find the area of the purple region

2. 2. If you see in the middle of the figure, you'll find a four-sided shape, named H I J K HIJK . Find its area!

3. 3. If D E = n cm DE = n \space \text{cm} , find the area of the white region and the area of purple region in term of n n


Try another problem on my set! Let's Practice


The answer is 118.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Guilherme Niedu
Apr 26, 2017

I'll do it all in terms of n n . First of all, it is important to note that H D I = K E H = J F K = I G J = 3 0 o \angle HDI = \angle KEH = \angle JFK = \angle IGJ = 30^o . Denoting J K \overline {JK} as x x , by cosine law:

x 2 = n 2 + n 2 2 n 2 cos ( 3 0 o ) \large \displaystyle x^2 = n^2 + n^2 - 2n^2 \cdot \cos(30^o)

x 2 = n 2 ( 2 3 ) \color{#20A900} \boxed{ \large \displaystyle x^2 = n^2 \cdot (2 - \sqrt{3}) }

Area H I J K HIJK is the area of a square of side x x plus 4 areas of circular segments, with angle 3 0 o 30^o and radius n n :

A H I J K = x 2 + 4 ( π n 2 12 A Δ D H I ) \large \displaystyle A_{HIJK} = x^2 + 4 \cdot \left ( \frac{\pi n^2}{12} - A_{\Delta DHI} \right)

Calculating A Δ D H I A_{\Delta DHI} by sine law and substituting x 2 x^2 :

A H I J K = n 2 ( 2 3 ) + 4 ( π n 2 12 n 2 4 ) \large \displaystyle A_{HIJK} = n^2 \cdot (2 - \sqrt{3}) + 4 \cdot \left (\frac{\pi n^2}{12} - \frac{n^2}{4} \right )

A H I J K = n 2 ( 1 + π 3 3 ) \color{#20A900} \boxed{ \large \displaystyle A_{HIJK} = n^2 \cdot \left (1 + \frac{\pi}{3} - \sqrt{3} \right ) }

now, to calculate A D K H F I J A_{DKHFIJ} , i.e., the area of the slit-looking part:

A D K H F I J = n 2 2 ( n 2 π n 2 4 ) \large \displaystyle A_{DKHFIJ} = n^2 - 2\cdot \left (n^2 - \frac{\pi n^2}{4} \right )

A D K H F I J = n 2 ( π 2 1 ) \color{#20A900} \boxed{ \large \displaystyle A_{DKHFIJ} = n^2 \left ( \frac{\pi}{2} - 1 \right )}

The area of each corner of the slit will be:

A D J K = 1 2 ( A D K H F I J A H I J K ) \large \displaystyle A_{DJK} = \frac12 \left (A_{DKHFIJ} - A_{HIJK} \right )

A D J K = 1 2 [ n 2 ( π 2 1 ) n 2 ( 1 + π 3 3 ) ] \large \displaystyle A_{DJK} = \frac12 \left [ n^2 \left ( \frac{\pi}{2} - 1 \right ) - n^2 \cdot \left (1 + \frac{\pi}{3} - \sqrt{3} \right ) \right ]

A D J K = 1 2 n 2 ( π 6 2 + 3 ) \color{#20A900} \boxed{ \large \displaystyle A_{DJK} = \frac12 n^2 \cdot \left ( \frac{\pi}{6} - 2 + \sqrt{3} \right ) }

The whole purple area will then be:

A P U R P L E = A H I J K + 4 A D J K \large \displaystyle A_{PURPLE} = A_{HIJK} + 4 \cdot A_{DJK}

A P U R P L E = n 2 ( 1 + π 3 3 ) + 4 1 2 n 2 ( π 6 2 + 3 ) \large \displaystyle A_{PURPLE} = n^2 \cdot \left (1 + \frac{\pi}{3} - \sqrt{3} \right ) + 4 \cdot \frac12 n^2 \cdot \left ( \frac{\pi}{6} - 2 + \sqrt{3} \right )

A P U R P L E = n 2 ( 2 π 3 + 3 3 ) \color{#20A900} \boxed{ \large \displaystyle A_{PURPLE} = n^2 \cdot \left ( \frac{2 \pi}{3} + \sqrt{3} - 3 \right ) }

White area will be:

A W H I T E = n 2 A P U R P L E \large \displaystyle A_{WHITE} = n^2 - A_{PURPLE}

A W H I T E = n 2 n 2 ( 2 π 3 + 3 3 ) \large \displaystyle A_{WHITE} = n^2 - n^2 \cdot \left ( \frac{2 \pi}{3} + \sqrt{3} - 3 \right )

A W H I T E = n 2 ( 4 2 π 3 3 ) \color{#20A900} \boxed{ \large \displaystyle A_{WHITE} = n^2 \left ( 4 - \frac{2 \pi}{3} - \sqrt{3}\right )}

For n = 4 n = 4 this leads to:

A W H I T E = 16 ( 4 2 π 3 3 ) \large \displaystyle A_{WHITE} = 16 \left ( 4 - \frac{2 \pi}{3} - \sqrt{3} \right )

A W H I T E = 32 ( 2 1 3 π 1 2 3 ) \large \displaystyle A_{WHITE} = 32 \left ( 2 - \frac13 \pi - \frac12 \sqrt{3} \right )

Which would lead to a = 32 , b = 2 , c = 3 , d = 2 , e = 3 , a + b + c + d + e = 42 a = 32, b = 2, c = 3, d = 2, e = 3, \boxed{a+b+c+d+e=42}

However, this is not the correct answer according to the problem. I am assuming that a a , b b , c c , d d and e e must be all different. Re-writing A W H I T E A_{WHITE} leads to:

A W H I T E = 64 ( 1 1 6 π 1 4 3 ) \color{#3D99F6} \boxed { \large \displaystyle A_{WHITE} = 64\left ( 1 - \frac16 \pi - \frac14 \sqrt{3} \right ) }

So:

a = 64 , b = 1 , c = 6 , d = 4 , e = 3 , a + b + c + d + e = 78 \color{#3D99F6} \large \displaystyle a = 64, b = 1, c = 6, d = 4, e = 3, \boxed{\large \displaystyle a+b+c+d+e=78}

Yeah. It supposed to be all different. I forgot to mention it.. Sorry.

Fidel Simanjuntak - 4 years, 1 month ago

Log in to reply

Now it is ok!

Guilherme Niedu - 4 years, 1 month ago

Wow, such a beautiful solution. Upvoted!

Fidel Simanjuntak - 4 years, 1 month ago

Log in to reply

Thank you, Fidel!

Guilherme Niedu - 4 years, 1 month ago

Log in to reply

By the way, what motivates you to make such solution? This kind of problem require a diligent person to solve.

Fidel Simanjuntak - 4 years, 1 month ago

Log in to reply

@Fidel Simanjuntak I've thought about the solution for the "Reuleaux square" area a couple years ago, when I was looking to a similar drawing in an apartment's floor. So, this to me was like extending my wondering from a couple years ago! :)

Besides, I like to be always didactic!

Guilherme Niedu - 4 years, 1 month ago

Log in to reply

@Guilherme Niedu Wow.. Such a nice coincidence.. Hehehe

Fidel Simanjuntak - 4 years, 1 month ago

The area of the required region is equal to 8 8 times the area of the white region in the above figure

From the above figure it is clear that ,

Area of the white region = Area of yellow region (Area of blue region+Area of red region) \text{Area of the white region}=\text{Area of yellow region}-\text{(Area of blue region+Area of red region)}

Now Δ DEH \Delta \text{DEH} is equilateral as all sides equals a a

H D E = 6 0 \implies\angle HDE=60^{\circ}

G D H = 3 0 G D E = 9 0 as DEFG is a square \implies \angle GDH=30^{\circ} \hspace{4mm}\color{#3D99F6}\small \angle GDE=90^{\circ}\text{ as DEFG is a square}

Area of yellow region = Area of square 2 = a 2 2 \text{Area of yellow region}=\dfrac{\text{Area of square}}{2}=\dfrac{a^2}{2}

Area of red region = Area of sector DHG = a 2 π 12 Area of sector = r 2 θ 2 where r is the radius and θ the angle of the sector in radian \text{Area of red region}=\text{Area of sector DHG}=a^2\cdot \dfrac{\pi}{12} \hspace{4mm}\color{#3D99F6}\small \text{Area of sector}=r^2\dfrac{\theta}{2}\text{ where r is the radius and } \theta \text{ the angle of the sector in radian}

Area of the blue region = Area of Δ D E H 2 = 3 8 a 2 Area of equilateral triangle with side a = 3 4 a 2 \text{Area of the blue region}=\dfrac{\text{Area of }\Delta DEH}{2}=\dfrac{\sqrt{3}}{8}\cdot a^2\hspace{4mm}\color{#3D99F6}\small \text{Area of equilateral triangle with side a}=\dfrac{\sqrt{3}}{4}\cdot a^2

Thus we have,

Area of white region = a 2 2 ( a 2 π 12 + 3 8 a 2 ) = a 2 2 ( 1 π 6 3 4 ) \begin{aligned}\text{Area of white region}&=\dfrac{a^2}{2}-\left(a^2\cdot \dfrac{\pi}{12}+\dfrac{\sqrt{3}}{8}\cdot a^2\right)\\ &=\dfrac{a^2}{2}\left(1-\dfrac{\pi}{6}-\dfrac{\sqrt{3}}{4}\right)\end{aligned}

Area of required region = 8 × Area of white region = 8 a 2 2 ( 1 π 6 3 4 ) \begin{aligned}\text{Area of required region}&=8\times\text{Area of white region}\\\\ &=\dfrac{8a^2}{2}\left(1-\dfrac{\pi}{6}-\dfrac{\sqrt{3}}{4}\right)\end{aligned}

a = 4 a=4 in the above problem ,

Area of required region = 64 ( 1 π 6 3 4 ) = 64 32 π 3 16 3 a + b + c + d + e = 64 + 32 + 3 + 16 + 3 = 118 \begin{aligned}\implies\text{Area of required region}&=64\left(1-\dfrac{\pi}{6}-\dfrac{\sqrt{3}}{4}\right)\\ &=64-\dfrac{32\pi}{3}-16\sqrt{3}\\ \implies a+b+c+d+e&=64+32+3+16+3=\color{#EC7300}\boxed{\color{#333333}118}\end{aligned}

Ahmad Saad
Apr 29, 2017

Why is it only for an odd number of sides ?

Fidel Simanjuntak - 4 years, 1 month ago

Log in to reply

See this

You can review above link by copy it and paste in any searching engine as google.

Ahmad Saad - 4 years, 1 month ago

Log in to reply

Okay, thanks!

Fidel Simanjuntak - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...