Looking back at each other

Geometry Level 2

If the perimeter of a triangle is 8 8 , find the maximum possible value of its area.

64 64 16 3 \frac{16}3 16 3 3 \frac{16}{3\sqrt3} 16 16 16 4 3 \frac{16}{4\sqrt3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

B y H e r o n s f o r m u l a , a r e a o f t r i a n g l e = s ( s a ) ( s b ) ( s c ) A l s o , b y A M G M i n e q u a l i t y , ( s a ) + ( s b ) + ( s c ) 3 [ ( s a ) ( s b ) ( s c ) ] 1 3 s 3 [ ( s a ) ( s b ) ( s c ) ] 1 3 ( s 3 ) 3 ( s a ) ( s b ) ( s c ) M u l t i p l y i n g b o t h s i d e s b y s , a n d t a k i n g s q u a r e r o o t , s ( s a ) ( s b ) ( s c ) s ( s 3 ) 3 s ( s a ) ( s b ) ( s c ) s 2 3 3 s ( s a ) ( s b ) ( s c ) 16 3 3 { s = 8 2 = 4 } m a x ( A r e a ) = 16 3 3 By\quad Heron's\quad formula,\\ area\quad of\quad triangle=\sqrt { s(s-a)(s-b)(s-c) } \\ \\ Also,\quad by\quad AM-GM\quad inequality,\quad \\ \frac { (s-a)+(s-b)+(s-c) }{ 3 } \ge { \left[ (s-a)(s-b)(s-c) \right] }^{ \frac { 1 }{ 3 } }\\ \Rightarrow \quad \frac { s }{ 3 } \ge { \left[ (s-a)(s-b)(s-c) \right] }^{ \frac { 1 }{ 3 } }\\ \Rightarrow \quad { \left( \frac { s }{ 3 } \right) }^{ 3 }\ge (s-a)(s-b)(s-c)\\ \\ Multiplying\quad both\quad sides\quad by\quad s,\quad and\quad taking\quad square\quad root,\\ \Rightarrow \sqrt { s(s-a)(s-b)(s-c) } \le \sqrt { { s\left( \frac { s }{ 3 } \right) }^{ 3 } } \\ \Rightarrow \sqrt { s(s-a)(s-b)(s-c) } \le \frac { { s }^{ 2 } }{ 3\sqrt { 3 } } \\ \Rightarrow \sqrt { s(s-a)(s-b)(s-c) } \le \frac { 16 }{ 3\sqrt { 3 } } \quad \quad \quad \quad \quad \left\{ s=\frac { 8 }{ 2 } =4 \right\} \\ \\ \boxed { \therefore \quad max\left( Area \right) =\frac { 16 }{ 3\sqrt { 3 } } } \\

Good solution !!

Akshat Sharda - 5 years, 7 months ago

Pls elaborate this AM GM thing

Debmeet Banerjee - 5 years, 7 months ago

Log in to reply

First and foremost thing about A.M G.M H.M inequality is it is defined only for positive reals.

A.M-arithmetic mean,G.M-geometric mean,H.M-harmonic mean

A.M G.M H.M inequality for a,b,terms where a,b \in positive reals

a + b 2 a b 2 2 1 a + 1 b \frac { a+b }{ 2 } \ge \sqrt [ 2 ]{ ab } \ge \frac { 2 }{ \frac { 1 }{ a } +\frac { 1 }{ b } }

Bala vidyadharan - 5 years, 7 months ago

Log in to reply

Oh!! Thank you so much!!

Debmeet Banerjee - 5 years, 7 months ago

Log in to reply

@Debmeet Banerjee You're welcome.

Bala vidyadharan - 5 years, 7 months ago

It is Arithematic mean geometric mean inequality A.M>G.M (X1+X2+...+Xn)/n≥(X1* X2 ..... Xn)^1/n

(*= multiplication)

Shivam K - 5 years, 6 months ago

Awesome !!!!

Ankur Mukherjee - 5 years, 7 months ago

But the perimeter is 8 the semi perimeter will not be 8 .

Kshitij Sinha - 5 years, 7 months ago

Will u please explain what have u done in second step?

Umang Chudasma - 5 years, 7 months ago

Log in to reply

He's showing that as 3 s a b c 3 [ ( s a ) ( s b ) ( s c ) ] 1 3 \dfrac{3s-a-b-c}{3} \geq [(s-a)(s-b)(s-c)]^\frac{1}{3} Thus we can say that 3 s 2 s 3 [ ( s a ) ( s b ) ( s c ) ] 1 3 \dfrac{3s-2s}{3} \geq [(s-a)(s-b)(s-c)]^\frac{1}{3} as a + b + c = 2 s a+b+c = 2s

Manish Mayank - 5 years, 6 months ago

I've taken (s-a),(s-b)&(s-c) as three integers.

Now, since the AM(arithmetic mean)of two or more integers is always greater than or equal to the G.M(geometric mean).

Therefore, ( s a ) + ( s b ) + ( s c ) 3 [ ( s a ) ( s b ) ( s c ) ] 1 3 \frac { (s-a)+(s-b)+(s-c) }{ 3 } \ge { \left[ (s-a)(s-b)(s-c) \right] }^{ \frac { 1 }{ 3 } }

For more details on AM-GM inequality see this https://brilliant.org/wiki/arithmetic-mean-geometric-mean/

Dinesh Nath Goswami - 5 years, 7 months ago

Sir 2 step i didnt get(s-a).....-s

Utsav Patel - 5 years, 7 months ago

I don't understood the second step

Umang Chudasma - 5 years, 7 months ago
Sanjwal Singhs
Nov 8, 2015

s=(a+b+c)/2 (or s=perimeter/2) a b c are sides of triangle

A=√s(s-a)(s-b)(s-c) It will be max when (s-a)(s-b)(s-c) is max. Clearly its maximum when a=b=c=2s/3=perimeter/3 substitute and get ans

Other solution using ap >= gp>=hp A=√s(s-a)(s-b)(s-c) as AP>=GP ≤ √s((s-a+s-b+s-c)/3)³ = √s(s/3)³ = √s⁴/3³ = s²/3√3 S=8/2 or 4 Substitute and get ans

ANS=16/3√3

In P Q R \triangle PQR let b = P Q b = \overline{PQ} , a = P R a = \overline{PR} , and θ = P \theta = \angle P .

The area of the triangle is A = 1 2 b h = 1 2 b a sin θ . A = \tfrac12 b h = \tfrac12 b a \sin\theta. Now consider a small deformation of the triangle, moving points Q Q and R R without changing the angle at P P , such that now a a + d x , b b d x . a \mapsto a + dx,\ \ \ b \mapsto b - dx. If the triangle is maximal, then the area should remain constant under such infinitesimal change. Therefore we write 0 = d A = 1 2 ( b d a + a d b ) sin θ = 1 2 ( b d x a d x ) sin θ . 0 = dA = \tfrac12 (b\:da + a\:db)\sin\theta = \tfrac12 (b\:dx - a\:dx) \sin\theta. This implies that a = b a = b for the maximal triangle.

It follows that the desired triangle is equilateral, with sides 8 / 3 8/3 and height 8 / 3 8/\sqrt3 . This gives an area of 16 / 3 3 16/3\sqrt 3 .

If the triangle is maximal, then the area should remain constant

Don't you have to prove the area can obtain a maximum value but can't obtain a minimum value?

Pi Han Goh - 5 years, 7 months ago

Log in to reply

The area can attain a minimum value when a side or angle becomes zero. This seemed so obvious that I did not include it in the solution.

Arjen Vreugdenhil - 5 years, 7 months ago

Area of any shape is maximum when its symmetrical....and so in case of triangle it will be equilateral triangle. So side= a =8/3 And area=(√3a^2/4)

Sir i lik your idea/logic but can you please give a prove.

Priyanshu Tirkey - 5 years, 7 months ago

This is just a hunch

Snehal Raj - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...