Can you generalise this?

Algebra Level 4

j = 2 1999 ( 1 1 j 2 ) \large \prod_{j=2}^{1999} \left( 1 - \dfrac1{j^2} \right)

If the value of the product above is equal to a b \dfrac ab , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 2999.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vishal S
Dec 30, 2015

j = 2 1999 ( 1 1 j 2 ) \prod _{ j=2 }^{ 1999 } \left( 1-\frac { 1 }{ { j }^{ 2 } } \right )

We can express ( 1 1 j 2 ) \left( 1-\frac { 1 }{ { j }^{ 2 } } \right) as ( 1 2 ( 1 j ) 2 ) \left( { 1 }^{ 2 }-{ \left( \frac { 1 }{ j } \right) }^{ 2 } \right) = ( 1 1 j ) \left( 1-\frac { 1 }{ { j } } \right) ( 1 + 1 j ) \left( 1+\frac { 1 }{ { j } } \right)

\Longrightarrow j = 2 1999 ( 1 1 j 2 ) \prod _{ j=2 }^{ 1999 } \left( 1-\frac { 1 }{ { j }^{ 2 } } \right ) = j = 2 1999 ( 1 + 1 j ) ( 1 1 j ) =\prod _{ j=2 }^{ 1999 }\left( 1+\frac { 1 }{ j } \right) \left( 1-\frac { 1 }{ j } \right)

= [ ( 1 + 1 2 ) ( 1 + 1 3 ) ( 1 + 1 4 ) . . . . ( 1 + 1 1999 ) ] [ ( 1 1 2 ) ( 1 1 3 ) ( 1 1 4 ) . . . . ( 1 1 1999 ) ] =\left[ \left( 1+\frac { 1 }{ 2 } \right) \left( 1+\frac { 1 }{ 3 } \right) \left( 1+\frac { 1 }{ 4 } \right) ....\left( 1+\frac { 1 }{ 1999 } \right) \right] \left[ \left( 1-\frac { 1 }{ 2 } \right) \left( 1-\frac { 1 }{ 3 } \right) \left( 1-\frac { 1 }{ 4 } \right) ....\left( 1-\frac { 1 }{ 1999 } \right) \right]

= [ ( 3 2 ) ( 4 3 ) ( 5 4 ) . . . . ( 2000 1999 ) ] [ ( 1 2 ) ( 2 3 ) ( 3 4 ) . . . . ( 1998 1999 ) ] =\left[ \left( \frac { 3 }{ 2 } \right) \left( \frac { 4 }{ 3 } \right) \left( \frac { 5 }{ 4 } \right) ....\left( \frac { 2000 }{ 1999 } \right) \right] \left[ \left( \frac { 1 }{ 2 } \right) \left( \frac { 2 }{ 3 } \right) \left( \frac { 3 }{ 4 } \right) ....\left( \frac { 1998 }{ 1999 } \right) \right]

= ( 2000 2 ) ( 1 1999 ) =\left( \frac { 2000 }{ 2 } \right) \left( \frac { 1 }{ 1999 } \right)

= 1000 1999 =\frac { 1000 }{ 1999 }

By comparing the above fraction with a b \frac { a }{ b } , we get

a=1000 & b=1999

\therefore a+b=2999

Can you mention the generalised identity ? By the way, nice solution :).

Venkata Karthik Bandaru - 5 years, 5 months ago

Log in to reply

Thx.I have mentioned the identity used to genralise

Vishal S - 5 years, 5 months ago

Log in to reply

(-_-') I guess you didnt get me. I meant a generalised simplification of the product.

Venkata Karthik Bandaru - 5 years, 5 months ago

Simplify j = 2 n ( 1 1 j 2 ) \large \prod_{j=2}^{n} \left( 1 - \dfrac1{j^2} \right) .

Venkata Karthik Bandaru - 5 years, 5 months ago

Log in to reply

@Venkata Karthik Bandaru After simplification which I have done in my solution, the above product can be written as

[ ( 1 + 1 2 ) ( 1 + 1 3 ) ( 1 + 1 4 ) . . . . ( 1 + 1 n ) ] [ ( 1 1 2 ) ( 1 1 3 ) ( 1 1 4 ) . . . . ( 1 1 n ) ] \left[ \left( 1+\frac { 1 }{ 2 } \right) \left( 1+\frac { 1 }{ 3 } \right) \left( 1+\frac { 1 }{ 4 } \right) ....\left( 1+\frac { 1 }{ n } \right) \right] \left[ \left( 1-\frac { 1 }{ 2 } \right) \left( 1-\frac { 1 }{ 3 } \right) \left( 1-\frac { 1 }{ 4 } \right) ....\left( 1-\frac { 1 }{ n } \right) \right]

= [ ( 3 2 ) ( 4 3 ) ( 5 4 ) . . . . ( n + 1 n ) ] [ ( 1 2 ) ( 2 3 ) ( 3 4 ) . . . . ( n 1 n ) ] =\left[ \left( \frac { 3 }{ 2 } \right) \left( \frac { 4 }{ 3 } \right) \left( \frac { 5 }{ 4 } \right) ....\left( \frac { n+1 }{ n } \right) \right] \left[ \left( \frac { 1 }{ 2 } \right) \left( \frac { 2 }{ 3 } \right) \left( \frac { 3 }{ 4 } \right) ....\left( \frac { n-1 }{ n } \right) \right]

After cancellation, the resultant of the above product will be ( n + 1 2 ) ( 1 n ) \left( \frac { n+1 }{ 2 } \right) \left( \frac { 1 }{ n } \right)

= n + 1 2 n =\frac { n+1 }{ 2n }

Vishal S - 5 years, 5 months ago

Log in to reply

@Vishal S That was what I asked you to mention :). Anyways, Happy New Year bro.

Venkata Karthik Bandaru - 5 years, 5 months ago

Log in to reply

@Venkata Karthik Bandaru Happy new year

Vishal S - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...