Are you as smart as Gauss?

Calculus Level 2

e 1 2 a x 2 d x = ? \large \int_{-\infty}^\infty e^{-\frac 12 ax^2} dx = ?

\infty 1 3 \frac 1{\sqrt 3} 0 0 2 π a \sqrt{\frac {2\pi}a}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 25, 2019

I = e 1 2 a x 2 d x Let u = a 2 x d u = a 2 d x = 2 a e u 2 d u Since the integrand is even, = 2 0 2 a e u 2 d u Error function erf ( z ) = 2 π 0 z e t 2 d t = 2 π a erf ( ) and erf ( ) = 1 = 2 π a \begin{aligned} I & = \int_{-\infty}^\infty e^{-\frac 12 ax^2} dx & \small \color{#3D99F6} \text{Let }u = \sqrt {\frac a2} x \implies du = \sqrt{\frac a2} dx \\ & = \int_{-\infty}^\infty \sqrt{\frac 2a} e^{-u^2} du & \small \color{#3D99F6} \text{Since the integrand is even,} \\ & = 2 \int_0^\infty \sqrt{\frac 2a} e^{-u^2} du & \small \color{#3D99F6} \text{Error function erf }(z) = \frac 2{\sqrt \pi} \int_0 ^z e^{- t^2} dt \\ & = \sqrt {\frac {2\pi}a} \text{erf }(\infty) & \small \color{#3D99F6} \text{and erf }(\infty) = 1 \\ & = \boxed{\sqrt {\dfrac {2\pi}a}} \end{aligned}


Reference: Error function erf ( ) \color{#3D99F6}\text{erf }(\cdot)

@Rio Schillmoeller , I have edited your problem. See the LaTex I have entered.

Imgur Imgur

Chew-Seong Cheong - 1 year, 10 months ago

Log in to reply

How can I edit answers? Thanks!

Mahdi Raza - 1 year, 1 month ago

Log in to reply

I think if you set the problem you have the right to edit it. But maybe not someone has answer the problem. I can edit because I am a moderator.

Chew-Seong Cheong - 1 year, 1 month ago

Log in to reply

@Chew-Seong Cheong ok, thanks

Mahdi Raza - 1 year, 1 month ago

Thanks for editing the text

Rio Schillmoeller - 1 year, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...