Why Don't You Cube It First?

Algebra Level 3

x + y = 3383 x 3 + y 3 = 17 x y = ? \large\begin{aligned}\begin{aligned}x+y=&3383\\\sqrt[3]x+\sqrt[3]y=&17\\xy=&?\end{aligned}\end{aligned}


The answer is 27000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Rishabh Jain
Apr 15, 2016

x 3 + y 3 = 17 x + y + 3 x y 3 ( x 3 + y 3 ) = 1 7 3 x y 3 = 1 7 3 ( x + y ) 3 ( x 3 + y 3 ) x y = ( 1 7 3 ( x + y ) 3 ( x 3 + y 3 ) ) 3 x y = ( 1 7 3 ( 3383 ) 3 ( 17 ) ) 3 x y = ( 30 ) 3 = 27000 \begin{aligned}&\sqrt[3] x+\sqrt[3] y=17\\\implies&x+y+3~\sqrt[3]{xy}(\sqrt[3]x+\sqrt[3] y)=17^3\\\implies&\sqrt[3]{xy}=\dfrac{17^3-(x+y)}{3(\sqrt[3]x+\sqrt[3] y)}\\\implies&xy=\left(\dfrac{17^3-(x+y)}{3(\sqrt[3]x+\sqrt[3] y)}\right)^3\\\implies&xy=\left(\dfrac{17^3-(3383)}{3(17)}\right)^3\\\implies&xy=(30)^3=\huge\boxed{27000}\end{aligned}


Formula used in second line: ( x + y ) 3 = x 3 + y 3 + 3 x y ( x + y ) \color{teal}{(x+y)^3=x^3+y^3+3xy(x+y)}

Nice substitution Guillermo

Shashank Hegde - 5 years, 2 months ago

Log in to reply

Wrong place ....see where you have written your comment...

Rishabh Jain - 5 years, 2 months ago

Log in to reply

Thank you Shashank, your solution, Rishabh, is cool too... Please,don't argue each other... The important is everything is allright and everybody is happy...

Guillermo Templado - 5 years, 2 months ago

Log in to reply

@Guillermo Templado No- nothing to argue ... I was just saying to write it at appropriate place so that the comment doesn't appear awkward.... :-)

Rishabh Jain - 5 years, 2 months ago

Log in to reply

@Rishabh Jain Yup,I for seeing this comment, Shashank had to write it under my solution, but I have seen it, so everything is allright at the end... :P

Guillermo Templado - 5 years, 2 months ago

Let's call x = a 3 , y = b 3 a 3 + b 3 = 3383 , a + b = 17 x = a^3, y = b^3 \Rightarrow a^3 + b^3 = 3383, \quad a + b = 17 and then a 3 + b 3 = 3383 = ( a + b ) ( a 2 a b + b 2 ) = 17 ( a 2 a b + b 2 ) a^3 + b^3 = 3383 = (a + b) \cdot (a^2 - ab + b^2) = 17 \cdot (a^2 - ab + b^2) \Rightarrow a 2 a b + b 2 = 199 ( 1 ) , 1 7 2 = 289 = a 2 + 2 a b + b 2 ( 2 ) a^2 - ab + b^2 = 199 \space \color{#D61F06}{(1)},\quad 17^2 = 289 = a^2 + 2ab + b^2 \space \color{#D61F06}{(2)} Substrating ( 1 ) \color{#D61F06}{(1)} to ( 2 ) \color{#D61F06}{(2)} we get 289 199 = 90 = 3 a b a b = 30 x y = a 3 b 3 = ( a b ) 3 = 27000 289 -199 = 90 = 3ab \Rightarrow ab = 30 \Rightarrow xy =a^3 \cdot b^3 = (ab)^{3} = 27000

Aniruddha Bagchi
Apr 17, 2016

Rishabh, nice solution. But I simply made assumptions that to get 17... we need two no.s such that their no. Of digits is at least 3 in each case because when they add up , they give 3383. So , the possible combinations are 9,8 10,7 11,6 12,5 ..... and the last one 16,1. In all of these you find that 15 cube gives 3375 which is almost 3383. So, The Magical Combination is 15,2. Thus 15 cube i.e, 3375 and 2 cube i.e, 8 gives a product

3375×8=27000

Matthew Riedman
Apr 16, 2016

x + y = ( x 3 + y 3 ) ( x 3 2 x y 3 + y 3 2 ) = 3383 x+y=\big(\sqrt[3]x+\sqrt[3]y\big)\big(\sqrt[3]x^2-\sqrt[3]{xy}+\sqrt[3]y^2\big)=3383

Substituting ( x 3 + y 3 ) = 17 \big(\sqrt[3]x+\sqrt[3]y\big)=17

17 ( x 3 2 x y 3 + y 3 2 ) = 3383 17\big(\sqrt[3]x^2-\sqrt[3]{xy}+\sqrt[3]y^2\big)=3383

And x 3 2 x y 3 + y 3 2 = 199 \sqrt[3]x^2-\sqrt[3]{xy}+\sqrt[3]y^2=199

Then, ( x 3 + y 3 ) 2 ( x 3 2 x y 3 + y 3 2 ) = 3 x y 3 = 289 199 = 90 \big(\sqrt[3]x+\sqrt[3]y\big)^2-\big(\sqrt[3]x^2-\sqrt[3]{xy}+\sqrt[3]y^2\big)=3\sqrt[3]{xy}=289-199=90

Finally, x y 3 = 30 \sqrt[3]{xy}=30 and x y = 3 0 3 = 27000 xy = 30^3 = \boxed{27000}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...