Cantor's Serpent

Calculus Level 5

It is well known that one can create a bijection between the natural numbers and the rational numbers by snaking diagonally through the entries of a grid, as can be seen in the picture.

We can define a sequence { a i } i = 1 \lbrace a_{i} \rbrace_{i=1}^{\infty} in that manner, ie

a 1 = 1 1 a 2 = 2 1 a 3 = 1 2 a 4 = 1 3 a 5 = 2 2 a 6 = 3 1 a 7 = 4 1 a 8 = 3 2 \begin{array}{ccc} a_1 = \frac{1}{1} & a_2 = \frac{2}{1} & a_3 = \frac{1}{2} \\ a_4 = \frac{1}{3} & a_5 = \frac{2}{2} & a_6 = \frac{3}{1} \\ a_7 = \frac{4}{1} & a_8 = \frac{3}{2} & \ldots \end{array}

Find the value of

lim n μ ( a i , n ( n + 1 ) / 2 ) n ln n \displaystyle \lim_{n \rightarrow \infty} \frac{\mu(a_{i}, n(n+1)/2)}{n \ln n}

where μ ( x i , n ) \mu(x_{i}, n) denotes the mean of the first n n elements of { x i } \lbrace x_{i} \rbrace .


The answer is 1.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ang Yan Sheng
Dec 17, 2014

Since the question keeps changing, let us prove once and for all that lim n μ ( a i , n ( n + 1 ) 2 ) n ln n = 1 2 . \lim_{n\to\infty}\frac{\mu(a_i,\frac{n(n+1)}2)}{n\ln n}=\frac12.

Let S n S_n be the sum of the first n ( n + 1 ) 2 \frac{n(n+1)}2 terms; we wish to find lim n S n n 2 ln n \lim_{n\to\infty}\frac{S_n}{n^2\ln n} . Firstly, S n = 1 1 + 1 2 + + 1 n 1 + 1 n + 2 1 + 2 2 + + 2 n 1 + + n 1 = H n + 2 H n 1 + + ( n 1 ) H 2 + n H 1 , \begin{aligned} S_n&=\frac11+\frac12+\cdots+\frac1{n-1}+\frac1n\\ &\quad+\frac21+\frac22+\cdots+\frac2{n-1}\\ &\quad+\cdots\\ &\quad+\frac n1\\ &=H_n+2H_{n-1}+\cdots+(n-1)H_2+nH_1, \end{aligned} where H k = 1 + 1 2 + + 1 k H_k=1+\frac12+\cdots+\frac1k .

Define ϵ k = H k ln k \epsilon_k=H_k-\ln k . Then S n = T n + ϵ n + 2 ϵ n 1 + + n ϵ 1 , S_n=T_n+\epsilon_n+2\epsilon_{n-1}+\cdots+n\epsilon_1, where T n = ln n + 2 ln ( n 1 ) + + ( n 1 ) ln 2 + n ln 1 T_n=\ln n+2\ln(n-1)+\cdots+(n-1)\ln2+n\ln1 .

Recall the standard result lim k ϵ k = γ = 0.577 \lim_{k\to\infty}\epsilon_k=\gamma=0.577\ldots . Hence the sequence ϵ k |\epsilon_k| is bounded by an absolute constant E E , so ϵ n + 2 ϵ n 1 + + n ϵ 1 n 2 ln n n ( n + 1 ) 2 E n 2 ln n 0 \left|\frac{\epsilon_n+2\epsilon_{n-1}+\cdots+n\epsilon_1}{n^2\ln n}\right|\leq\frac{\frac{n(n+1)}2E}{n^2\ln n}\to0 as n n\to\infty . Hence we are left to find lim n T n n 2 ln n \lim_{n\to\infty}\frac{T_n}{n^2\ln n} .

Now note that T n = ( ln n n + ln n ) + 2 ( ln n 1 n + ln n ) + + n ( ln 1 n + ln n ) = n ( n + 1 ) 2 ln n + j = 1 n f ( j n ) + n j = 1 n g ( j n ) , \begin{aligned} T_n&=(\ln\frac nn+\ln n)+2(\ln\frac{n-1}n+\ln n)+\cdots+n(\ln\frac1n+\ln n)\\ &=\frac{n(n+1)}2\ln n+\sum_{j=1}^n f(\frac jn)+n\sum_{j=1}^n g(\frac jn), \end{aligned} where f ( x ) = ln x f(x)=\ln x and g ( x ) = ( 1 x ) ln x g(x)=(1-x)\ln x .

But as n n\to\infty , we have 1 n j = 1 n f ( j n ) 0 1 ln x d x = 1 , \frac1n\sum_{j=1}^n f(\frac jn)\to\int_0^1\!\ln x\,dx=-1, and 1 n j = 1 n g ( j n ) 0 1 ( 1 x ) ln x d x = 3 4 . \frac1n\sum_{j=1}^n g(\frac jn)\to\int_0^1\!(1-x)\ln x\,dx=-\frac34.

Hence lim n T n n 2 ln n = lim n ( n ( n + 1 ) 2 ln n n 2 ln n + 1 n j = 1 n f ( j n ) n ln n + 1 n j = 1 n g ( j n ) ln n ) = lim n ( n ( n + 1 ) 2 ln n n 2 ln n 1 n ln n 3 4 ln n ) = 1 2 0 0 = 1 2 , \begin{aligned} \lim_{n\to\infty}\frac{T_n}{n^2\ln n} &=\lim_{n\to\infty}\left(\frac{\frac{n(n+1)}2\ln n}{n^2\ln n}+\frac{\frac1n\sum_{j=1}^n f(\frac jn)}{n\ln n}+\frac{\frac1n\sum_{j=1}^n g(\frac jn)}{\ln n}\right)\\ &=\lim_{n\to\infty}\left(\frac{\frac{n(n+1)}2\ln n}{n^2\ln n}-\frac1{n\ln n}-\frac{\frac34}{\ln n}\right)\\ &=\frac12-0-0\\ &=\frac12, \end{aligned} as desired.

Mannn.... I thought the mean was the average of the terms....

Julian Poon - 6 years, 4 months ago

I agree that lim n S n n 2 ln n = 1 2 . \lim_{n \to \infty} \frac{S_n}{n^2 \ln n} = \frac{1}{2}. But then S n = n ( n + 1 ) 2 μ ( a i , n ( n + 1 ) 2 ) S_n = \frac{n(n + 1)}{2} \mu (a_i, \frac{n(n + 1)}{2}) . Substituting, I get lim n μ ( a i , n ( n + 1 ) 2 ) ln n = 1. \lim_{n \to \infty} \frac{\mu(a_i, \frac{n(n + 1)}{2})}{\ln n} = 1.

Jon Haussmann - 6 years, 4 months ago

Log in to reply

@Ang Yan Sheng Thoughts?

I do not agree with

Let S n S_n be the sum of the first n ( n + 1 ) 2 \frac{n(n+1)}2 terms; we wish to find lim n S n n 2 ln n \lim_{n\to\infty}\frac{S_n}{n^2\ln n} .

Calvin Lin Staff - 6 years, 4 months ago

Log in to reply

Indeed, I seem to have thought that μ ( a i , n ( n + 1 ) 2 ) = S n n \mu(a_i,\frac{n(n+1)}2)=\frac{S_n}n ...

Ang Yan Sheng - 6 years, 4 months ago

Log in to reply

@Ang Yan Sheng Thanks. I have updated the answer to 1.

Can you update the solution accordingly?

Calvin Lin Staff - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...