Check for Substitution

Algebra Level 3

If x + y + z = x y z x+y+z=xyz , x , y , z R + x,y,z \in \mathbb R^{+} , where x , y , z 1 x,y,z\neq 1 then

2 x 1 x 2 + 2 y 1 y 2 + 2 z 1 z 2 = n x y z ( 1 x 2 ) ( 1 y 2 ) ( 1 z 2 ) \dfrac{2x}{1-x^2}+\dfrac{2y}{1-y^2}+\dfrac{2z}{1-z^2} = \dfrac{nxyz}{(1-x^2)(1-y^2)(1-z^2)}

Input n n .

8 6 2 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

X = 2 x 1 x 2 + 2 y 1 y 2 + 2 z 1 z 2 = c y c 2 x ( 1 y 2 ) ( 1 z 2 ) ( 1 x 2 ) ( 1 y 2 ) ( 1 z 2 ) = 2 ( x x y 2 z 2 x + x y 2 z 2 ) ( 1 x 2 ) ( 1 y 2 ) ( 1 z 2 ) = 2 ( x + y + z x y 2 y z 2 z x 2 x 2 y y 2 z z 2 x + x y 2 z 2 + x 2 y z 2 + x 2 y 2 z ) ( 1 x 2 ) ( 1 y 2 ) ( 1 z 2 ) = 2 ( x y z x y ( x + y ) y z ( y + z ) z x ( z + x ) + x y z ( x y + y z + z x ) ) ( 1 x 2 ) ( 1 y 2 ) ( 1 z 2 ) = 2 ( x y z x y ( x + y + z ) y z ( x + y + z ) z x ( x + y + z ) + 3 x y z + x y z ( x y + y z + z x ) ) ( 1 x 2 ) ( 1 y 2 ) ( 1 z 2 ) = 2 ( 4 x y z ( x + y + z ) ( x y + y z + z x ) + x y z ( x y + y z + z x ) ) ( 1 x 2 ) ( 1 y 2 ) ( 1 z 2 ) = 2 ( 4 x y z x y z ( x y + y z + z x ) + x y z ( x y + y z + z x ) ) ( 1 x 2 ) ( 1 y 2 ) ( 1 z 2 ) = 8 x y z ( 1 x 2 ) ( 1 y 2 ) ( 1 z 2 ) \begin{aligned} X & = \frac {2x}{1-x^2} + \frac {2y}{1-y^2} + \frac {2z}{1-z^2} \\ & = \frac {\displaystyle \sum_{cyc} 2x(1-y^2)(1-z^2)}{(1-x^2)(1-y^2)(1-z^2)} \\ & = \frac {2 \sum \left(x-xy^2 -z^2x+xy^2z^2\right)}{(1-x^2)(1-y^2)(1-z^2)} \\ & = \frac {2\left({\color{#3D99F6}x+y+z}-xy^2-yz^2-zx^2 -x^2y-y^2z-z^2x+xy^2z^2+x^2yz^2+x^2y^2z \right)}{(1-x^2)(1-y^2)(1-z^2)} \\ & = \frac {2\left({\color{#3D99F6}xyz}-xy(x+y)-yz(y+z)-zx(z+x)+xyz(xy+yz+zx) \right)}{(1-x^2)(1-y^2)(1-z^2)} \\ & = \frac {2\left(xyz-xy(x+y+{\color{#D61F06}z})-yz({\color{#D61F06}x}+y+z)-zx(x+{\color{#D61F06}y}+z) {\color{#D61F06}+3xyz}+xyz(xy+yz+zx) \right)}{(1-x^2)(1-y^2)(1-z^2)} \\ & = \frac {2\left(4xyz - {\color{#3D99F6}(x+y+z)}(xy+yz+zx) +xyz(xy+yz+zx) \right)}{(1-x^2)(1-y^2)(1-z^2)} \\ & = \frac {2\left(4xyz - {\color{#3D99F6}xyz}(xy+yz+zx) +xyz(xy+yz+zx) \right)}{(1-x^2)(1-y^2)(1-z^2)} \\ & = \frac {8xyz}{(1-x^2)(1-y^2)(1-z^2)} \end{aligned}

n = 8 \implies n = \boxed{8}

An easy way: x=y=z=sqrt(3) That would get things sorted.

Sahil Silare - 3 years, 11 months ago

Proposition: Let a , b , c R a,b,c \in \mathbb{R} . Then tan a + tan b + tan c = tan a tan b tan c \tan a+\tan b+\tan c=\tan a\tan b\tan c if and only if a + b + c = π k a+b+c=\pi k for some k Z k \in \mathbb{Z} .

Proof:

  • Suppose that a + b + c = π k a+b+c=\pi k for some k Z k \in \mathbb{Z} . Then tan ( a + b ) = tan ( π k c ) \tan(a+b)=\tan(\pi k-c) . Since tan ( x ) \tan(x) is an odd function and has period π \pi , then tan ( a + b ) = tan ( c ) \tan(a+b)=-\tan(c) . Using the formula for the tangent of the sum of two angles we have tan a + tan b 1 tan a tan b = tan c \dfrac{\tan a+\tan b}{1-\tan a\tan b}=-\tan c . Finally we rearrange the equation: tan a + tan b = tan c + tan a tan b tan c \tan a+\tan b=-\tan c+\tan a\tan b\tan c , so tan a + tan b + tan c = tan a tan b tan c \tan a+\tan b+\tan c=\tan a\tan b\tan c .

  • Suppose that tan a + tan b + tan c = tan a tan b tan c \tan a+\tan b+\tan c=\tan a\tan b\tan c . Then tan a + tan b = tan c + tan a tan b tan c \tan a+\tan b=-\tan c+\tan a\tan b\tan c . We can factor the RHS to obtain tan a + tan b = tan c ( 1 tan a tan b ) \tan a+\tan b=-\tan c(1-\tan a\tan b) , so tan a + tan b 1 tan a tan b = tan c \dfrac{\tan a+\tan b}{1-\tan a\tan b}=-\tan c . Using the formula that we used before and the fact that tan x \tan x is odd we have tan ( a + b ) = tan ( c ) \tan(a+b)=\tan(-c) , so a + b + π m = c + π n a+b+\pi m=-c+\pi n for all m , n Z m,n \in \mathbb{Z} . Finally, a + b + c = π ( n m ) a+b+c=\pi(n-m) , and n m Z n-m \in \mathbb{Z} .

Let x = tan a x=\tan a , y = tan b y=\tan b and z = tan c z=\tan c . Let the expression be X X . Then X = 2 tan a 1 tan 2 a + 2 tan b 1 tan 2 b + 2 tan c 1 tan 2 c = tan ( 2 a ) + tan ( 2 b ) + tan ( 2 c ) X=\dfrac{2\tan a}{1-\tan^2 a}+\dfrac{2\tan b}{1-\tan^2 b}+\dfrac{2\tan c}{1-\tan^2 c}=\tan(2a)+\tan(2b)+\tan(2c) . Since x + y + z = x y z x+y+z=xyz , we have a + b + c = π k a+b+c=\pi k for some k Z k \in \mathbb{Z} and 2 a + 2 b + 2 c = 2 π k 2a+2b+2c=2\pi k . Then X = tan ( 2 a ) tan ( 2 b ) tan ( 2 c ) = ( 2 tan a 1 tan 2 a ) ( 2 tan b 1 tan 2 b ) ( 2 tan c 1 tan 2 c ) = 2 x y z ( 1 x 2 ) ( 1 y 2 ) ( 1 z 2 ) X=\tan(2a)\tan(2b)\tan(2c)=\left(\dfrac{2\tan a}{1-\tan^2 a}\right) \left(\dfrac{2\tan b}{1-\tan^2 b}\right) \left(\dfrac{2\tan c}{1-\tan^2 c}\right)=\dfrac{2xyz}{(1-x^2)(1-y^2)(1-z^2)} , so n = 8 n=\boxed{8} .

Post the solution to your geometry i.e trigonometry question whose answer is 1. It is wrong, please check. You can't take the limiting value of both sin expression in numerator and denominator as equal. It is just tending to 0. Expand sin function. It diverges.

Check again !!!!

Sanjay Kumar - 3 years, 11 months ago

Log in to reply

Which problem?

Alan Enrique Ontiveros Salazar - 3 years, 11 months ago

Log in to reply

https://brilliant.org/problems/amazed-at-the-expressioneven-i-was-too/?ref_id=1379305

Sanjay Kumar - 3 years, 11 months ago

Log in to reply

@Sanjay Kumar But that's not my problem, it is from the author of this problem.

Alan Enrique Ontiveros Salazar - 3 years, 11 months ago

Log in to reply

@Alan Enrique Ontiveros Salazar No, that question doesn't have discuss option so I commented on one of his other questions. It wasn't directed to you.

Sanjay Kumar - 3 years, 11 months ago

Log in to reply

@Sanjay Kumar Hello. I think you want to talk to me Sir. Any problem? I think its correct sir.

Md Zuhair - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...