Check Your Natural Talent(2)!!!

Calculus Level 3

2.5 ! = a π b \large 2.5! = \dfrac {a\sqrt{\pi}}{b}

Find a b a - b , where a a and b b are coprime positive integers.

6 3 7 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 15, 2018

Relevant wiki: Gamma Function

Similar solution with @Niraj Sawant 's

Using the identity Γ ( n ) = ( n 1 ) ! \Gamma (n) = (n-1)! , where Γ ( ) \Gamma (\cdot) denotes the gamma function, we have:

2.5 ! = Γ ( 7 2 ) Note that Γ ( s + 1 ) = s Γ ( s ) = 5 2 × Γ ( 5 2 ) = 5 2 × 3 2 × Γ ( 3 2 ) = 5 2 × 3 2 × 1 2 × Γ ( 1 2 ) also that Γ ( z ) Γ ( 1 z ) = π sin ( π z ) = 15 π 8 putting z = 1 2 \begin{aligned} 2.5! & = \color{#3D99F6} \Gamma \left(\frac 72\right) & \small \color{#3D99F6} \text{Note that }\Gamma (s+1) = s\Gamma(s) \\ & = \frac 52 \times \Gamma \left(\frac 52\right) \\ & = \frac 52 \times \frac 32 \times \Gamma \left(\frac 32\right) \\ & = \frac 52 \times \frac 32 \times \frac 12 \times \color{#3D99F6} \Gamma \left(\frac 12\right) & \small \color{#3D99F6} \text{also that }\Gamma (z) \Gamma (1-z) = \frac \pi{\sin (\pi z)} \\ & = \frac {15\color{#3D99F6} \sqrt \pi}8 & \small \color{#3D99F6} \text{putting }z=\frac 12 \end{aligned}

Therefore, a b = 15 8 = 7 a-b= 15-8 = \boxed 7 .

Thank you for posting such a wonderful solution! I had read that point lots of time, but didn't use it. Anyways, how do you colour your text?

A Former Brilliant Member - 2 years, 6 months ago

Log in to reply

You can place your mouse cursor on top of the formulas to see the LaTex code.

Chew-Seong Cheong - 2 years, 6 months ago

Log in to reply

Oh! Actually I use my phone, I currently dont have a laptop /PC.

A Former Brilliant Member - 2 years, 6 months ago

Log in to reply

@A Former Brilliant Member {\color{blue} Blue} {\color{red} Red} B l u e R e d {\color{#3D99F6} Blue} {\color{#D61F06} Red}

Chew-Seong Cheong - 2 years, 6 months ago

Great solution, comrade! Using your method inductively, we find the closed formula ( n + 1 2 ) ! = ( 2 n + 1 ) ! ! 2 n + 1 π \left(n+\frac{1}{2}\right)!=\frac{(2n+1)!!}{2^{n+1}}\sqrt{\pi} for non-negative n n . The masterful display of your solution illustrates this formula very well, 2.5 ! = 5 2 × 3 2 × 1 2 × π 2.5! =\frac 52 \times \frac 32 \times \frac 12 \times \sqrt{\pi} .

Otto Bretscher - 2 years, 6 months ago

The factorial of any real number is defined by the Pi Function.

( n ) ! = ( n ) = 0 t n e t d t = Γ ( n + 1 ) \boxed{(n)! = \prod (n) = \displaystyle \int_0^\infty t^{n} e^{-t} dt = \Gamma(n +1)}

Γ ( x ) \Gamma( x) is called the Gamma Function

( 2.5 ) ! = ( 5 2 ) ! = 0 t 5 2 e t d t \boxed{(2.5)! =\displaystyle (\dfrac {5}{2})! = \displaystyle \int_0^\infty t^{\frac{5}{2}} e^{-t} dt}

Substitute, t = r 2 d t = 2 r d r t = r^{2} \Rightarrow dt =2rdr

0 r 5 e r 2 ( 2 r d r ) = 0 r 5 ( 2 r e r 2 ) d r \displaystyle \int_0^\infty r^{5} e^{-r^{2}} (2rdr) = \int_0^\infty r^{5} (2re^{-r^2} )dr

= [ r 5 ] 0 0 2 r e r 2 d r 0 ( d d r ( r 5 ) 0 ( 2 r e r 2 d r ) ) d r =\displaystyle [r^{5}]_0^\infty \int_0^\infty 2re^{-r^2} dr - \int_0^\infty (\dfrac {d}{dr}(r^5) \int_0^\infty (2re^{-r^2}dr))dr

= [ r 5 ( e r 2 ) ] 0 0 5 r 4 ( e r 2 ) d r = ( 0 ) + 0 5 r 3 e r 2 d r = [r^5 (-e^{-r^2})]_0^\infty - \displaystyle \int_0^\infty 5r^4(-e^{-r^2})dr = (0) +\displaystyle \int_0^\infty 5r^3 e^{-r^2} dr

Now,

0 5 r 3 2 ( 2 r e r 2 ) d r = [ 5 r 3 2 ] 0 0 ( 2 r e r 2 ) d r 0 ( 15 r 2 2 0 ( 2 r e r 2 ) d r ) d r = [ 5 r 3 2 ( e r 2 ) ] 0 0 15 r 2 2 ( e r 2 ) d r = ( 0 ) + 0 15 r 2 2 ( e r 2 ) d r \displaystyle \int_0^\infty \dfrac {5r^3}{2}(2re^{-r^2}) dr = [\dfrac {5r^3}{2}]_0^\infty \displaystyle \int_0^\infty (2re^{-r^2})dr - \displaystyle \int_0^\infty (\dfrac {15r^2}{2} \displaystyle \int_0^\infty (2re^{-r^2})dr)dr = [\dfrac {5r^3}{2}(-e^{-r^2})]_0^\infty - \displaystyle \int_0^\infty \dfrac {15r^2}{2} (-e^{-r^2})dr = (0) + \displaystyle \int_0^\infty \dfrac {15r^2}{2} (e^{-r^2})dr

Now,

0 15 r 2 2 ( e r 2 ) d r = 0 15 r 4 ( 2 r e r 2 ) d r = [ 15 r 4 ] 0 0 ( 2 r e r 2 ) d r 0 ( 15 4 0 ( 2 r e r 2 ) d r ) d r = [ 15 r 4 ( e r 2 ) ] 0 0 15 4 ( e r 2 ) d r \displaystyle \int_0^\infty \dfrac {15r^2}{2} (e^{-r^2})dr = \displaystyle \int_0^\infty \dfrac {15r}{4} (2re^{-r^2})dr = [\dfrac {15r}{4}]_0^\infty \displaystyle \int_0^\infty (2re^{-r^2})dr - \displaystyle \int_0^\infty (\dfrac {15}{4} \displaystyle \int_0^\infty (2re^{-r^2})dr) dr = [\dfrac {15r}{4}(-e^{-r^2})]_0^\infty - \displaystyle \int_0^\infty \dfrac {15}{4}(-e^{-r^2})dr

= ( 0 ) + 15 4 0 e r 2 d r = 15 4 × π 2 = 15 π 8 = a π b =(0) + \dfrac {15}{4}\displaystyle \int_0^\infty e^{-r^2} dr = \dfrac {15}{4}\times \dfrac {\sqrt{π}}{2} = \dfrac {15\sqrt{π}}{8} = \dfrac {a\sqrt{π}}{b}

.Since, ( e x 2 d x = π ) \color{#20A900}{(\displaystyle \int_{-\infty}^\infty e^{-x^2}dx = \sqrt{π} } )

( 2.5 ) ! = 15 π 8 = 3.32335097044784 \boxed{(2.5)! = \dfrac {15\sqrt{π}}{8} = 3.32335097044784}

A N S W E R : a b = 15 8 = 7 ANSWER: a - b = 15 - 8 =\boxed{7}

For more detailed explanation watch this

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...