2 . 5 ! = b a π
Find a − b , where a and b are coprime positive integers.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Thank you for posting such a wonderful solution! I had read that point lots of time, but didn't use it. Anyways, how do you colour your text?
Log in to reply
You can place your mouse cursor on top of the formulas to see the LaTex code.
Log in to reply
Oh! Actually I use my phone, I currently dont have a laptop /PC.
Log in to reply
@A Former Brilliant Member – {\color{blue} Blue} {\color{red} Red} B l u e R e d
Great solution, comrade! Using your method inductively, we find the closed formula ( n + 2 1 ) ! = 2 n + 1 ( 2 n + 1 ) ! ! π for non-negative n . The masterful display of your solution illustrates this formula very well, 2 . 5 ! = 2 5 × 2 3 × 2 1 × π .
The factorial of any real number is defined by the Pi Function.
( n ) ! = ∏ ( n ) = ∫ 0 ∞ t n e − t d t = Γ ( n + 1 )
Γ ( x ) is called the Gamma Function
( 2 . 5 ) ! = ( 2 5 ) ! = ∫ 0 ∞ t 2 5 e − t d t
Substitute, t = r 2 ⇒ d t = 2 r d r
∫ 0 ∞ r 5 e − r 2 ( 2 r d r ) = ∫ 0 ∞ r 5 ( 2 r e − r 2 ) d r
= [ r 5 ] 0 ∞ ∫ 0 ∞ 2 r e − r 2 d r − ∫ 0 ∞ ( d r d ( r 5 ) ∫ 0 ∞ ( 2 r e − r 2 d r ) ) d r
= [ r 5 ( − e − r 2 ) ] 0 ∞ − ∫ 0 ∞ 5 r 4 ( − e − r 2 ) d r = ( 0 ) + ∫ 0 ∞ 5 r 3 e − r 2 d r
Now,
∫ 0 ∞ 2 5 r 3 ( 2 r e − r 2 ) d r = [ 2 5 r 3 ] 0 ∞ ∫ 0 ∞ ( 2 r e − r 2 ) d r − ∫ 0 ∞ ( 2 1 5 r 2 ∫ 0 ∞ ( 2 r e − r 2 ) d r ) d r = [ 2 5 r 3 ( − e − r 2 ) ] 0 ∞ − ∫ 0 ∞ 2 1 5 r 2 ( − e − r 2 ) d r = ( 0 ) + ∫ 0 ∞ 2 1 5 r 2 ( e − r 2 ) d r
Now,
∫ 0 ∞ 2 1 5 r 2 ( e − r 2 ) d r = ∫ 0 ∞ 4 1 5 r ( 2 r e − r 2 ) d r = [ 4 1 5 r ] 0 ∞ ∫ 0 ∞ ( 2 r e − r 2 ) d r − ∫ 0 ∞ ( 4 1 5 ∫ 0 ∞ ( 2 r e − r 2 ) d r ) d r = [ 4 1 5 r ( − e − r 2 ) ] 0 ∞ − ∫ 0 ∞ 4 1 5 ( − e − r 2 ) d r
= ( 0 ) + 4 1 5 ∫ 0 ∞ e − r 2 d r = 4 1 5 × 2 π = 8 1 5 π = b a π
.Since, ( ∫ − ∞ ∞ e − x 2 d x = π )
( 2 . 5 ) ! = 8 1 5 π = 3 . 3 2 3 3 5 0 9 7 0 4 4 7 8 4
A N S W E R : a − b = 1 5 − 8 = 7
For more detailed explanation watch this
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Gamma Function
Similar solution with @Niraj Sawant 's
Using the identity Γ ( n ) = ( n − 1 ) ! , where Γ ( ⋅ ) denotes the gamma function, we have:
2 . 5 ! = Γ ( 2 7 ) = 2 5 × Γ ( 2 5 ) = 2 5 × 2 3 × Γ ( 2 3 ) = 2 5 × 2 3 × 2 1 × Γ ( 2 1 ) = 8 1 5 π Note that Γ ( s + 1 ) = s Γ ( s ) also that Γ ( z ) Γ ( 1 − z ) = sin ( π z ) π putting z = 2 1
Therefore, a − b = 1 5 − 8 = 7 .