Starting from rest, a particle moves along a circle of radius with an angular acceleration of . During the time, the particle covers a quartle of the circle, find the magnitude of average velocity is .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
S i n c e , t h e b o d y i s i n i t i a l l y a t r e s t , S o , i t ′ s i n t i a l a n g u l a r v e l o c i t y ( ω ) = 0 N o w , i t s a n g u l a r a c c e l e r a t i o n ( α ) = 4 π S i n c e , i t c o v e r s q u a r t e r a c i r c l e , a n g u l a r d i s p l a c e m e n t ( θ ) = 2 π U s i n g t h e f i r s t e q u a t i o n o f m o t i o n o f c i r c u l a r d y n a m i c s , θ = ω t + 2 1 α t 2 , w h e r e t i s i n s e c o n d s 2 π = 0 + 2 1 4 π t 2 C a n c e l l i n g l i k e t e r m s , t = 2 s e c o n d s . N o w , l e t t h e i n i t a l p o s i t i o n o f t h e b o d y b e ′ A ′ . L e t , t h e c e n t e r o f t h e c i r c l e b e ′ O ′ a n d t h e f i n a l p o s i t i o n b e ′ B ′ . I n △ O A B , ∠ A O B = 2 π S i n c e i t i s a n i s o s c e l e s t r i a n g l e , t h e o t h e r t w o a n g l e s a r e 4 π r a d . e a c h . S o , u s i n g s i n e l a w , sin 4 π O A ˉ = sin 2 π A B ˉ N o w , O A ˉ i s t h e r a d i u s o f t h e c i r c l e = 2 m . U s i n g t h e v a l u e s , 2 1 2 = 1 A B ˉ A B ˉ = 2 m . N o w , A B ˉ i s t h e l i n e a r d i s p l a c e m e n t o f t h e p a r t i c l e f r o m ′ A ′ t o ′ B ′ . A v e r a g e v e l o c i t y = t i m e t a k e n T o t a l l i n e a r d i s p l a c e m e n t v a v g . = 2 2 m / s v a v g . = 1 m / s