What A Weird Shape!

Geometry Level 3

There is a common tangent which intersects the three tangent circles shown above at E , E, F , F, and G . G. If E F = 6 EF = 6 and F G = 3 FG = 3 , find the area of the orange region. Use the approximation π 22 7 . \pi \approx \frac{22}{7}.


The answer is 49.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Discussions for this problem are now closed

Rahul Paswan
Feb 8, 2015

Really nice solution , no need to actually find radius.Good

Gautam Sharma - 6 years, 4 months ago

Well , I found out the radius. :P

Nihar Mahajan - 6 years, 4 months ago

I also calculated the radius.

Gautam Sharma - 6 years, 4 months ago

@Gautam Sharma Let S = π 4 × ( a 2 + b 2 + a × b ) S = \frac{\pi}{4} \times (a^2 + b^2 + a \times b)

Put a = 6 , b = 3. find S.

Nihar Mahajan - 6 years, 4 months ago
Ujjwal Rane
Feb 11, 2015

Imgur Imgur

We can consider this region as two 'nested' Arbeloses!

So after finding a b = 9 ; b c = 9 4 ; a c = 9 2 ab=9;~~~~bc=\frac{9}{4};~~~~ac=\frac{9}{2} [I did not show working here as most solutions in the thread have already done it]

Area of the green Arbelos = π a b = 9 π \pi ab = 9\pi . . . . see this video for what is an Arbelos and the interesting expression for its area.

Area of yellow Arbelos = π c ( a + b ) = π c a + π c b = π ( 9 2 + 9 4 ) \pi c(a+b) = \pi ca + \pi cb = \pi (\frac{9}{2} + \frac{9}{4})

Add the two for total area A = 22 7 × 9 ( 1 + 1 2 + 1 4 ) = 49.5 A = \frac{22}{7} \times 9 (1+\frac{1}{2}+\frac{1}{4}) = \boxed{49.5}

For another interesting property of an Arbelos see this note

Thanks. Very nice and interesting. Where do you get all this from?

Niranjan Khanderia - 6 years, 4 months ago

Thank you Sir! Don't remember now, but was probably doing a video on geometric construction to find square roots when I came across this shape. There are a many others with interesting properties like special areas, perimeters . . . all discovered by the ancient geometers! May be creating notes on these would be useful.

Ujjwal Rane - 6 years, 4 months ago

Please do create notes.

Niranjan Khanderia - 6 years, 3 months ago
Nihar Mahajan
Feb 10, 2015

Let the radii of the circles be a , b , c a , b , c

We know , b = a c ( 1 ) b = \sqrt {ac} \dots (1)

Also , similarity gives us -

G F F E = J I I H 3 6 = a + b b + c ) 3 6 = a + b b + c ) \frac{GF}{FE} = \frac{JI}{IH} \Rightarrow \frac{3}{6} = \frac{a + b}{b + c)} \Rightarrow \frac{3}{6} = \frac{a + b}{b + c)}

This relation gives us 2 a + b = c . . . ( 2 ) 2a + b = c . . .(2)

Also , [ G J H E ] = [ G J I F ] + [ F I H E ] [GJHE] = [GJIF] + [FIHE]

1 2 ( a + c ) ( 9 ) = 1 2 ( a + b ) ( 3 ) + 1 2 ( b + c ) ( 6 ) \Rightarrow \frac{1}{2}(a + c)(9) = \frac{1}{2}(a + b)(3) + \frac{1}{2}(b + c)(6)

After simplifying this , we get c = 3 b 2 a . . . ( 3 ) c = 3b - 2a . . .(3)

Equating ( 2 ) , ( 3 ) (2) , (3)

2 a + b = 3 b 2 a b = 2 a 2a + b = 3b -2a \Rightarrow b = 2a

From relation ( 1 ) (1) and b = 2 a b =2a , we get , c = 4 a c = 4a

Also , Area of shaded region = 1 2 × 22 7 ( 7 a ) ( 7 a ) 1 2 × 22 7 ( 4 a ) ( 4 a ) 1 2 × 22 7 ( 2 a ) ( 2 a ) 1 2 × 22 7 ( a ) ( a ) = \frac{1}{2}\times \frac{22}{7}(7a)(7a) - \frac{1}{2} \times \frac{22}{7}(4a)(4a) - \frac{1}{2} \times \frac{22}{7}(2a)(2a) - \frac{1}{2} \times \frac{22}{7}(a)(a)

= 77 a 2 11 7 ( 16 a 2 + 4 a 2 + a 2 ) = 77a^2 - \frac{11}{7}(16a^2 + 4a^2 + a^2)

= 77 a 2 33 a 2 = 77a^2 - 33a^2

= 44 a 2 = 44a^2 .

Let J K F I JK \perp FI giving us Δ J K I , J K = 3 , K I = a , J I = 3 a \Delta JKI , JK = 3 , KI = a , JI = 3a

Using Pythagoras theorem , 9 a 2 = 3 2 + a 2 9a^2 = 3^2 + a^2

8 a 2 = 9 8a^2 = 9

a = 3 ( 2 ) 4 a =\frac {3(\sqrt {2})}{4}

So , area of shaded region = 44 a 2 = 44 ( 3 ( 2 ) 4 ) 2 = 44 × 18 16 = 99 2 = 49.5 44a^2 =44(\frac {3(\sqrt {2})}{4})^2 = 44 \times \frac{18}{16} = \frac{99}{2} = \huge \boxed{49.5}

Using similar logic as Banti Paswan , maybe shorter solution. Let the radii of circles AB, BC and CD be r 3 r_3 , r 2 r_2 and r 1 r_1 respectively. Using Banti's diagram, we notice that:

{ O 2 O 3 2 O 2 N 2 = O 3 N ( r 2 + r 1 ) 2 ( r 2 r 1 ) 2 = 3 2 4 r 1 r 2 = 9 . . . ( 1 ) O 1 O 2 2 O 1 P 2 = O 2 P ( r 3 + r 2 ) 2 ( r 3 r 2 ) 2 = 6 2 4 r 2 r 3 = 36 . . . ( 2 ) O 1 O 3 2 O 1 Q 2 = O 3 Q ( r 3 + 2 r 2 + r 1 ) 2 ( r 3 r 1 ) 2 = ( 3 + 6 ) 2 = 81 . . . ( 3 ) \begin{cases} O_2O_3^2-O_2N^2 = O_3N & & \\ \quad \Rightarrow (r_2+r_1)^2-(r_2-r_1)^2=3^2 & \Rightarrow 4r_1r_2 = 9 &...(1) \\ O_1O_2^2-O_1P^2 = O_2P & & \\ \quad \Rightarrow (r_3+r_2)^2-(r_3-r_2)^2=6^2 & \Rightarrow 4r_2r_3 = 36 &...(2) \\ O_1O_3^2-O_1Q^2 = O_3Q & & \\ \quad \Rightarrow (r_3+2r_2+r_1)^2-(r_3-r_1)^2=(3+6)^2 & = 81 &...(3) \end{cases}

From Eqn 2 ÷ \div Eqn 1: r 3 r 1 = 4 r 3 = 4 r 1 \Rightarrow \dfrac {r_3}{r_1} = 4 \quad \Rightarrow r_3 = 4r_1 . Substituting this in Eqn 3:

( r 3 + 2 r 2 + r 1 ) 2 ( r 3 r 1 ) 2 = 81 ( 5 r 1 + 2 r 2 ) 2 ( 3 r 1 ) 2 = 81 16 r 1 2 + 20 r 1 r 2 + 4 r 2 2 = 81 16 r 1 2 + 5 ( 4 r 1 r 2 ) + 4 r 2 2 = 81 16 r 1 2 + 5 ( 9 ) + 4 r 2 2 = 81 16 r 1 2 + 4 r 2 2 = 36 4 r 1 2 + r 2 2 = 9 4 r 1 2 + r 2 2 = 4 r 1 r 2 4 r 1 2 4 r 1 r 2 + r 2 2 = 0 ( 2 r 1 r 2 ) 2 = 0 \ \begin{aligned} (r_3+2r_2+r_1)^2-(r_3-r_1)^2 & = 81 \\ (5r_1+2r_2)^2 - (3r_1)^2 & = 81 \\ 16r_1^2 + 20r_1r_2 + 4r_2^2 & = 81 \\ 16r_1^2 + 5(4r_1r_2) + 4r_2^2 & = 81 \\ 16r_1^2 + 5(9) + 4r_2^2 & = 81 \\ 16r_1^2 + 4r_2^2 & =36 \\ 4r_1^2 + r_2^2 & = 9 \\ 4r_1^2 + r_2^2 & = 4r_1r_2 \\ 4r_1^2 -4r_1r_2+ r_2^2 & = 0 \\ (2r_1-r_2)^2 & = 0 \ \end{aligned}

r 2 = 2 r 1 8 r 1 2 = 9 r 1 = 3 8 r 2 = 6 8 r 3 = 12 8 \Rightarrow r_2 = 2r_1 \Rightarrow 8r_1^2 = 9 \Rightarrow r_1 = \dfrac {3} {\sqrt{8}} \Rightarrow r_2 = \dfrac {6} {\sqrt{8}} \Rightarrow r_3 = \dfrac {12} {\sqrt{8}}

The area of the orange shaded region is given by:

A = π 2 [ ( r 1 + r 2 + r 3 ) 2 r 1 2 r 2 2 r 3 2 ] = π r 1 2 2 [ ( 1 + 2 + 4 ) 2 1 2 2 2 4 2 ] = 11 7 × ( 3 8 ) 2 [ 49 1 4 16 ] = 11 7 × 9 8 × 28 = 99 2 = 49.5 \begin{aligned} A & = \dfrac {\pi}{2} [(r_1+r_2+r_3)^2-r_1^2-r_2^2-r_3^2] \\ & = \dfrac {\pi r_1^2}{2}[(1+2+4)^2-1^2-2^2-4^2] \\ & = \frac {11}{7} \times (\frac {3}{\sqrt{8}})^2 [ 49-1-4-16] \\ & = \frac {11}{7} \times \frac {9}{8} \times 28 \\ & = \frac {99}{2} \\ & = \boxed{49.5} \end{aligned}

Your and @Banti Paswan 's solution needs advance geometry , while @Nihar Mahajan 's solution is just simple pure geometry. But I like both!

Nitesh Chaudhary - 6 years, 4 months ago

Write a solution. If we draw a line EG further to meet the line AD out of the circle at, say, point H. And let the centers are O1, O2, O3 for small, medium, and big circles respectively. When we draw the radii towards the tangents, all angles are 90 degrees, and we'll see that there are 3 triangles: HGO1, HFO2, & HEO3.

These three share the same H angle and are all right-angled triangles, so they are similar. Then suppose r is the radius of small circle; and R is the radius of the medium circle. The ratio of EF:FG=O3E:O2F=6/3=2, so the big circle has a radius of 2R. Then O2O3:O2O1= 2R+R:R+r = 2, so 3R=2R+2r, or R=2r. The radius of the medium is 2r and that of big circle is 4r.

Now, considering triangles HEO3 and HFO2, 6+3+GH = 2(3+GH) as the ratio is again 2, and GH is 3 and HO1 is 3r.

The small triangle HGO1 is right-angled, so (3r)^2 = r^2+3^2; r^2= 9/8.

The rest is simple; the gold region area= pi/2((7r)^2-(4r)^2-(2r)^2-r^2) = 14pi (r^2)= 14pi (9/8)= (63/4)pi, which will be approximately 49.48.

O 0 , O 1 , O 2 , O 3 a r e t h e c e n t r e s o f B i g g e s t , S m a l l e s t , S m a l l , a n d B i g c i r c l e s r e s p e c t i v e l y . G K A D c u t F O 2 a t H a n d E O 3 a t K . I n E G K , F H E K t h e f o l l o w i n g r a t i o s . G H = r 1 + r 2 H K = r 2 + r 3 . . . F H = r 2 r 1 . . . E K = r 3 r 1 r 1 + r 2 3 = r 2 + r 3 6 a n d r 2 r 1 3 = r 3 r 1 9 S o l v i n g f o r r 1 : r 2 = 2 r 1 , r 3 = 4 r 1 r 0 = r 1 + r 2 + r 3 = 7 r 1 I n r t . G F H r t a t F G H 2 F H 2 = 3 2 ( r 1 + r 2 ) 2 ( r 2 r 1 ) 2 = 8 r 1 2 = 9 . r 1 2 = 9 8 R e q u i e r e d a r e a = π 2 { r 0 2 r 0 1 r 2 2 r 3 2 } = π 2 { 7 2 1 1 2 2 4 2 } r 1 2 = π 2 28 9 8 = 49.5 O_0,~ O_1,~ O_2,~ O_3~are~the~centres~of~Biggest,~Smallest,~Small,~and ~\\~Big~circles~respectively. ~GK \parallel AD~cut~ FO_2 ~at~H~and~EO_3~ at~K.\\In~\triangle EGK,~FH ~ \parallel EK~\implies~the~following~ratios.\\ GH=r_1+r_2…HK=r_2+r_3...FH=r_2-r_1...EK=r_3-r_1\\ \dfrac{r_1 + r_2}{3}=\dfrac{r_2+r_3}{6}~~~and~~ \dfrac{r_2-r_1}{3}=\dfrac{r_3-r_1}{9}\\ Solving~for~r_1:- \\~r_2=2r_1,…r_3=4r_1 \implies r_0=r_1+r_2+r_3=7r_1\\ In~rt.\angle ~ \triangle GFH~ rt ~\angle~at~ F\\GH^2-FH^2=3^2\implies (r_1+r_2)^2 -( r_2-r_1)^2=8*r_1^2=9…. r_1^2=\dfrac{9}{8} \\Requiered~ area~ \\=\dfrac{\pi}{2}*\{r_0^2- r_0^1- r_2^2- r_3^2\}\\=\dfrac{\pi}{2}*\{7^2- 1^1- 2^2- 4^2\}*r_1^2 \\=\dfrac{\pi}{2}*28*\dfrac{9}{8}~~~~~~~=\boxed{\color{#D61F06}{49.5} } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...