CMIMC 2017

Calculus Level 4

k = 3 k k 2 ! = A e B \large \sum_{k=3}^{\infty}\frac{k}{\left \lfloor \frac{k}{2}\right \rfloor!}=Ae-B

The equation above holds true for positive integers A A and B B . Find A + B A+B .

Notation: e 2.718 e \approx 2.718 denotes the Euler's number .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Jun 18, 2017

First of all recall that:

e x = k = 0 x k k ! \large \displaystyle e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}

Differentiating with respect to x x and multiplying by x x :

x e x = k = 0 k x k k ! \large \displaystyle xe^x = \sum_{k=0}^{\infty} \frac{kx^k}{k!}

Making x = 1 x=1 on both equations:

e = k = 0 1 k ! = k = 0 k k ! \color{#20A900} \boxed{ \large \displaystyle e = \sum_{k=0}^{\infty} \frac{1}{k!} = \sum_{k=0}^{\infty} \frac{k}{k!} }

Now, to the problem:

S = k = 3 k k 2 ! \large \displaystyle S = \sum_{k=3}^{\infty} \frac{k}{\left \lfloor \frac{k}{2} \right \rfloor ! }

S = 3 + 4 2 ! + 5 2 ! + 6 3 ! + 7 3 ! + . . . \large \displaystyle S = 3 + \frac{4}{2!} + \frac{5}{2!} + \frac{6}{3!} + \frac{7}{3!} +...

S = 3 + k = 2 2 k + 2 k + 1 k ! \large \displaystyle S = 3 + \sum_{k=2}^{\infty} \frac{2k + 2k+1}{k!}

S = 3 + 4 k = 2 k k ! + k = 2 1 k ! \large \displaystyle S = 3 + 4\sum_{k=2}^{\infty} \frac{k}{k!} + \sum_{k=2}^{\infty} \frac{1}{k!}

S = 3 + 4 [ k = 0 k k ! 1 ] + [ k = 0 1 k ! 2 ] \large \displaystyle S = 3 + 4\left [ \sum_{k=0}^{\infty} \frac{k}{k!} - 1 \right ] + \left [ \sum_{k=0}^{\infty} \frac{1}{k!} - 2 \right ]

S = 3 + 4 ( e 1 ) + ( e 2 ) \large \displaystyle S = 3 + 4(e-1) + (e-2)

S = 5 e 3 \color{#20A900} \boxed{\large \displaystyle S = 5e-3}

Thus:

A = 5 , B = 3 , A + B = 8 \large \displaystyle \color{#3D99F6} A=5, B = 3, \boxed{\large \displaystyle A+B=8}

Nice! One question though: how does k = 0 1 k ! = k = 0 k k ! \displaystyle \sum_{k \ = \ 0}^{\infty} \frac{1}{k!} = \sum_{k \ = \ 0}^{\infty} \frac{k}{k!} ?

Zach Abueg - 3 years, 11 months ago

Log in to reply

You can go as I did, differentiating. Or, you can begin changing the beginning of the second sum to k = 1 k=1 , since the term for k = 0 k=0 is 0 0 . Then, recall that k ! = k ( k 1 ) ! k! = k(k-1)! . This will leave you with k = 1 1 ( k 1 ) ! \sum_{k=1}^{\infty} \frac{1}{(k-1)!} . Make n = k 1 n = k-1 and it becomes the first sum.

Guilherme Niedu - 3 years, 11 months ago

Log in to reply

Yes, that's exactly how I thought about it: algebraically. Then shouldn't k = 0 1 k ! = k = 1 1 ( k 1 ) ! \displaystyle \sum_{k \ = \ 0}^{\infty} \frac{1}{k!} = \sum_{k \ = \ 1}^{\infty} \frac{1}{(k - 1)!} ? Since you subtracted one from a n a_n , you should add one to the index.

Zach Abueg - 3 years, 11 months ago

Log in to reply

@Zach Abueg Hint: To get to the RHS, it seems like we want to multiply by k k \frac{k}{k} . Remember that k k = 1 \frac{ k}{k} = 1 except when ....

Calvin Lin Staff - 3 years, 11 months ago

Log in to reply

@Calvin Lin Except when k = 0 k = 0 \, \, ! That enlightens it, I realize my mistake now. Thanks!

Zach Abueg - 3 years, 11 months ago

Log in to reply

@Zach Abueg Right. The term k k ! \frac{ k} { k!} when k = 0 k = 0 is equal to 0. So we're "adding 0 in a very creative way".

Calvin Lin Staff - 3 years, 11 months ago
Chew-Seong Cheong
Jun 20, 2017

S = k = 3 k k 2 ! = 3 1 ! + 4 2 ! + 5 2 ! + 6 3 ! + 7 3 ! + 8 4 ! + = k = 1 2 k + 1 k ! + k = 2 2 k k ! = 2 k = 1 1 ( k 1 ) ! + k = 1 1 k ! + 2 k = 2 1 ( k 1 ) ! = 2 k = 0 1 k ! + k = 0 1 k ! 1 + 2 ( k = 0 1 k ! 1 ) = 5 k = 0 1 k ! 3 = 5 e 3 \begin{aligned} S & = \sum_{k=3}^\infty \frac k{\left \lfloor \frac k2 \right \rfloor !} \\ & = {\color{#3D99F6}\frac 3{1!}} + {\color{#D61F06}\frac 4{2!}} + {\color{#3D99F6}\frac 5{2!}} + {\color{#D61F06}\frac 6{3!}}+ {\color{#3D99F6}\frac 7{3!}} + {\color{#D61F06}\frac 8{4!}} + \cdots \\ & = {\color{#3D99F6} \sum_{k=1}^\infty \frac {2k+1}{k!}} + {\color{#D61F06} \sum_{k=2}^\infty \frac {2k}{k!}} \\ & = {\color{#3D99F6} 2\sum_{k=1}^\infty \frac 1{(k-1)!} +\sum_{k=1}^\infty \frac 1{k!}} + {\color{#D61F06} 2\sum_{k=2}^\infty \frac 1{(k-1)!}} \\ & = 2\sum_{\color{#D61F06}k=0}^\infty \frac 1{k!} + \sum_{\color{#D61F06}k=0}^\infty \frac 1{k!} {\color{#D61F06}- 1} + 2 \left(\sum_{\color{#D61F06}k=0}^\infty \frac 1{k!} {\color{#D61F06}- 1}\right) \\ & = 5 \sum _{k=0}^\infty \frac 1{k!} - 3 \\ & = 5e - 3 \end{aligned}

A + B = 5 + 3 = 8 \implies A + B = 5+3 = \boxed{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...