Coefficients

If the value of
404 C 4 4 C 1 303 C 4 + 4 C 2 202 C 4 4 C 3 101 C 4 \displaystyle ^{404}C_{4} -^{4}C_{1} ^{303}C_{4} + ^{4}C_{2} ^{202}C_{4} - ^{4}C_{3} ^{101}C_{4} can be represented as 10 1 α 101 ^{\alpha} . The value of α \alpha is

This problem is a part of the set Advanced is basic .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

The Given equation can be re written as

S = r = 0 n 1 ( 1 ) r n C r k ( n r ) C n S=\sum _{ r=0 }^{ n-1 }{ { \left( -1 \right) }^{ r }\quad ^{ n }{ C }_{ r }\quad ^{ k(n-r) }{ C }_{ n } } for n = 4 n=4 and k = 101 k=101

Consider ( 1 + x ) n = r = 0 n n C r x r { \left( 1+x \right) }^{ n }=\sum _{ r=0 }^{ n }{ ^{ n }{ C }_{ r }\quad { x }^{ r } }

replace x x By ( 1 + x ) k -{ \left( 1+x \right) }^{ k } and re writing the equation as

( ( 1 + x ) k 1 ) n = r = 0 n ( 1 ) n r ( n C r ) ( 1 + x ) k ( n r ) { \left( { \left( 1+x \right) }^{ k }-1 \right) }^{ n }=\sum _{ r=0 }^{ n }{ { \left( -1 \right) }^{ n-r }\left( ^{ n }{ C }_{ r } \right) { \left( 1+x \right) }^{ k(n-r) } }

Now Comparing coefficient of x n { x }^{ n } in both sides \forall ( n r ) > 0 (n-r)>0 The R . H . S . R.H.S. Gives us S S

For L . H . S . L.H.S. differentiate it n n times and dividing by n ! n! then put x = 0 x=0 and we will get S = ( k ) n S={ \left( k \right) }^{ n }

= > => S = r = 0 n 1 ( 1 ) ( n r ) ( n C r ) ( k ( n r ) C n ) = ( k ) n S=\sum _{ r=0 }^{ n-1 }{ { \left( -1 \right) }^{ (n-r) }\left( ^{ n }{ C }_{ r } \right) \left( ^{ k(n-r) }{ C }_{ n } \right) } ={ \left( k \right) }^{ n }

Now in Our Case n = 4 n=4 and k = 101 k=101

S = r = 0 3 ( 1 ) ( 4 r ) ( 4 C r ) ( 101 ( 4 r ) C 4 ) S=\sum _{ r=0 }^{ 3 }{ { \left( -1 \right) }^{ (4-r) }\left( ^{ 4 }{ C }_{ r } \right) \left( ^{ 101(4-r) }{ C }_{ 4 } \right) }

( ( 1 + x ) 101 1 ) 4 = ( ( 1 ( 1 + x ) 101 ) 4 = ( 4 C 0 ) ( ( 1 + x ) 101 ) 0 + ( 4 C 1 ) ( ( 1 + x ) 101 ) 1 + ( 4 C 2 ) ( ( 1 + x ) 101 ) 2 + ( 4 C 3 ) ( ( 1 + x ) 101 ) 3 + ( 4 C 4 ) ( ( 1 + x ) 101 ) 4 { \left( { \left( 1+x \right) }^{ 101 }-1 \right) }^{ 4 }={ \left( { \left( 1-(1+x \right) }^{ 101 } \right) }^{ 4 }=\left( ^{ 4 }{ C }_{ 0 } \right) { \left( -{ \left( 1+x \right) }^{ 101 } \right) }^{ 0 }+\left( ^{ 4 }{ C }_{ 1 } \right) { \left( -{ \left( 1+x \right) }^{ 101 } \right) }^{ 1 }+\left( ^{ 4 }{ C }_{ 2 } \right) { \left( -{ \left( 1+x \right) }^{ 101 } \right) }^{ 2 }+\left( ^{ 4 }{ C }_{ 3 } \right) { \left( -{ \left( 1+x \right) }^{ 101 } \right) }^{ 3 }+\left( ^{ 4 }{ C }_{ 4 } \right) { \left( -{ \left( 1+x \right) }^{ 101 } \right) }^{ 4 }

Now comparing coefficients of x 4 { x }^{ 4 } in Both Sides.

R . H . S . R.H.S. gives us S and For L . H . S . L.H.S. we have to compute f ( 4 ) ( 0 ) 4 ! \frac { { f }^{ (4) }\left( 0 \right) }{ 4! } which is 4 t h { 4 }^{ th } derivative of f ( x ) = ( ( 1 + x ) 101 1 ) 4 f\left( x \right) ={ \left( { \left( 1+x \right) }^{ 101 }-1 \right) }^{ 4 } divided by 4 ! 4!

f 1 ( x ) = 404 ( x + 1 ) 100 ( ( 1 + x ) 101 1 ) ) 3 { f }^{ 1 }\left( x \right) =404{ (x+1) }^{ 100 }{ \left( { (1+x })^{ 101 }-1) \right) }^{ 3 }

f 2 ( x ) = 40400 ( x + 1 ) 99 ( ( 1 + x ) 101 1 ) ) 3 + 122412 ( x + 1 ) 200 ( ( 1 + x ) 101 1 ) ) 2 { f }^{ 2 }\left( x \right) =40400{ (x+1) }^{ 99 }{ \left( { (1+x })^{ 101 }-1) \right) }^{ 3 }+122412{ (x+1) }^{ 200 }{ \left( { (1+x })^{ 101 }-1) \right) }^{ 2 }

f 3 ( x ) = 3999600 ( x + 1 ) 98 ( ( 1 + x ) 101 1 ) ) 3 + 36723600 ( x + 1 ) 199 ( ( 1 + x ) 101 1 ) ) 2 + 24727224 ( x + 1 ) 300 ( ( 1 + x ) 101 1 ) ) 1 { f }^{ 3 }\left( x \right) =3999600{ (x+1) }^{ 98 }{ \left( { (1+x })^{ 101 }-1) \right) }^{ 3 }+36723600{ (x+1) }^{ 199 }{ \left( { (1+x })^{ 101 }-1) \right) }^{ 2 }+24727224{ (x+1) }^{ 300 }{ \left( { (1+x })^{ 101 }-1) \right) }^{ 1 }

f 4 ( x ) = 391960800 ( x + 1 ) 97 ( ( 1 + x ) 101 1 ) ) 3 + 8519875200 ( x + 1 ) 198 ( ( 1 + x ) 101 1 ) ) 2 + 14836334400 ( x + 1 ) 299 ( ( 1 + x ) 101 1 ) ) 1 + 2497449624 ( x + 1 ) 400 { f }^{ 4 }\left( x \right) =391960800{ (x+1) }^{ 97 }{ \left( { (1+x })^{ 101 }-1) \right) }^{ 3 }+8519875200{ (x+1) }^{ 198 }{ \left( { (1+x })^{ 101 }-1) \right) }^{ 2 }+14836334400{ (x+1) }^{ 299 }{ \left( { (1+x })^{ 101 }-1) \right) }^{ 1 }+2497449624{ \left( x+1 \right) }^{ 400 }

f 4 ( 0 ) = 2497449624 { f }^{ 4 }\left( 0 \right) =2497449624

Now coefficient of x 4 { x }^{ 4 } in f ( x ) f\left( x \right) is f 4 ( 0 ) 4 ! = 2497449624 4 ! = 104060401 = 101 4 \frac { { f }^{ 4 }\left( 0 \right) }{ 4! } =\frac { 2497449624 }{ 4! } =104060401={ 101 }^{ 4 }

Hiroto Kun
Feb 2, 2017

@aryan goyat @Rishabh Deep Singh can you tell me how you did it pl. ?

I just wrote a solution can you please check it?

Rishabh Deep Singh - 4 years, 4 months ago

Log in to reply

thank you -thank you , aap bahut ache hai sir :)

hiroto kun - 4 years, 4 months ago

Log in to reply

Bhai i am not Sir i am a student, Tag me if you need any help.

Rishabh Deep Singh - 4 years, 4 months ago

Log in to reply

@Rishabh Deep Singh yes bhai , i will be sure to do it :) thnx again :)

hiroto kun - 4 years, 4 months ago

@Rishabh Deep Singh bhai, can you give me some help regarding NDa exam ? i'll be giving it this year :) how to score high in it ?

hiroto kun - 4 years, 4 months ago

Log in to reply

@Hiroto Kun i dont Know much about NDA but it is easy and you have to practice for the physical test which is the real challenge. Otherwise the written test is not soo hard.

Rishabh Deep Singh - 4 years, 4 months ago

Log in to reply

@Rishabh Deep Singh oh , yeah i think i'll pass the written one :)

hiroto kun - 4 years, 4 months ago
Integer Lord
May 17, 2015

Looking for a solution

@Keshav Tiwari plz reply

Kyle Finch - 6 years ago

Log in to reply

Sorry , but i won't we able to post a solution this week . I will surely do so next week . : ) :)

Keshav Tiwari - 6 years ago

Log in to reply

Ok i will remind u after sunday

Kyle Finch - 6 years ago

Log in to reply

@Kyle Finch Thanks for cooperating!

Keshav Tiwari - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...