Compelling Cubic

Algebra Level 3

The roots of the polynomial f ( x ) = 2 x 3 + 20 x 2 + 201 x + 2013 f(x) = 2x^3 + 20x^2 + 201x + 2013 are α , β \alpha, \beta and γ \gamma . What is the value of ( α + 1 ) ( β + 1 ) ( γ + 1 ) -(\alpha+1) (\beta + 1) ( \gamma + 1) ?


The answer is 915.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

12 solutions

Meet Udeshi
Nov 25, 2013

the function can be written as f ( x ) = 2 ( x α ) ( x β ) ( x γ ) f(x) = 2(x-\alpha)(x-\beta)(x-\gamma) Substituting x = 1 x=-1 in f ( x ) f(x) we get f ( 1 ) = 2 ( α + 1 ) ( β + 1 ) ( γ + 1 ) = 2 + 20 201 + 2013 f(-1)=-2(\alpha+1)(\beta+1)(\gamma+1)=-2+20-201+2013 Thus the answer is 915 915

BEAUTIFUL

Andre Tan - 7 years, 6 months ago

Elegant!

Hanissa S - 7 years, 6 months ago

Really nice!

Muh. Amin Widyatama - 7 years, 6 months ago

what a wonderful steps ! thank you very much !

Yao Lun Chung - 7 years, 6 months ago

why 2, Is this a multiple of the equation?

Ewerton Cassiano - 7 years, 6 months ago

Log in to reply

if you consider f ( x ) = ( x α ) ( x β ) ( x γ ) f(x)=(x-\alpha)(x-\beta)(x-\gamma) , then the co-effiecient of x 3 x^3 will be 1 1 . So to make it exactly equal to the given f ( x ) f(x) we need to multiply by 2 2

Meet Udeshi - 7 years, 6 months ago
Sarah Hunt
Nov 25, 2013

Using Vieta's Forumulas we know the following:

α + β + γ = 20 2 = 10 \alpha + \beta + \gamma = \frac{-20}{2} = -10

α β + α γ + β γ = 201 2 \alpha \beta + \alpha \gamma + \beta \gamma = \frac{201}{2}

α β γ = 2013 2 \alpha \beta \gamma = \frac{-2013}{2}

Then, expanding out the target value gives: ( α + 1 ) ( β + 1 ) ( γ + 1 ) = [ α β γ + α β + α γ + β γ + α + β + γ + 1 ] -( \alpha + 1 )( \beta + 1) ( \gamma + 1) = - [ \alpha \beta \gamma + \alpha \beta + \alpha \gamma + \beta \gamma + \alpha + \beta + \gamma + 1 ]

Then substitute the values we know:

[ 2013 2 + 201 2 + 20 2 + 1 ] = 1830 2 = 915 -[ \frac{-2013}{2} + \frac{201}{2} + \frac{-20}{2} + 1] = -\frac{-1830}{2} = \boxed{915}

Sorry,applying Vieta's Forumulas is that the only way to solve this question?

Yao Lun Chung - 7 years, 6 months ago

Log in to reply

There are many other ways to approach this problem. Meet's solution is especially interesting, and extremely clear, using the technique of Remainder-Factor Theorem, and substitution.

It is not necessary to use Vieta's, just that it tends to be the common fallback in these kind of questions.

Calvin Lin Staff - 7 years, 6 months ago

Log in to reply

sorry,so can you briefly tell me how to solve this question with Remainder-Factor Theorem?

Yao Lun Chung - 7 years, 6 months ago

Log in to reply

@Yao Lun Chung Yao, you can check my solution below. I have done it using the remainder-factor theorem

Meet Udeshi - 7 years, 6 months ago

Hi. I've seen this of "Vieta's Formula" is commonly used. Where can i learn about it?

Diego E. Nazario Ojeda - 7 years, 6 months ago
Arkan Megraoui
Nov 25, 2013

The polynomial with roots α + 1 , β + 1 , γ + 1 \alpha+1,\beta+1,\gamma+1 can be obtain by tansforming f(x) to f(x-1) (why?) giving f ( x 1 ) = 2 ( x 1 ) 3 + 20 ( x 1 ) 2 + 201 ( x 1 ) + 2013. f(x-1)=2(x-1)^3+20(x-1)^2+201(x-1)+2013. Since we are only interested in the product of the roots - i.e. ( α + 1 ) ( β + 1 ) ( γ + 1 ) (\alpha+1)(\beta+1)(\gamma+1) - then by Viete's relations we only need the 0th degree term of f(x-1). This can be found easily as 2 ( 1 ) + 20 ( 1 ) + 201 ( 1 ) + 2013 = 1830 2(-1)+20(1)+201(-1)+2013=1830 , and so is ( α + 1 ) ( β + 1 ) ( γ + 1 ) = 1830 / 2 = 915 (\alpha+1)(\beta+1)(\gamma+1)=-1830/2=-915 . But we wanted minus that, which is 915 . \boxed{915}.

Concise and clear :)

Krishna Gundu - 7 years, 6 months ago

Log in to reply

Thanks!

Arkan Megraoui - 7 years, 6 months ago
Daniel Thompson
Nov 24, 2013

The polynomial f f defined by f ( x ) = 2 x 3 + 20 x 2 + 201 x + 2013 f(x)=2x^3+20x^2+201x+2013 has roots α , β \alpha,\beta and γ \gamma . That is, f ( α ) = 0 f(\alpha)=0 , f ( β ) = 0 f(\beta)=0 and f ( γ ) = 0 f(\gamma)=0 .

To find ( α + 1 ) ( β + 1 ) ( γ + 1 ) -(\alpha+1)(\beta +1)(\gamma +1) use the transformation t = x + 1 t=x+1 on the polynomial to form a new polynomial. This new polynomial will have roots ( α + 1 ) , ( β + 1 ) (\alpha +1) ,(\beta +1 ) and ( γ + 1 ) (\gamma +1) . Then ( α + 1 ) ( β + 1 ) ( γ + 1 ) -(\alpha+1)(\beta +1)(\gamma +1) will be the constant term divided by the leading coefficient.

So using t = x + 1 t=x+1 , f ( t 1 ) = 2 ( t 1 ) 3 + 20 ( t 1 ) 2 + 201 ( t 1 ) + 2013 f(t-1)=2(t-1)^3+20(t-1)^2+201(t-1)+2013 . Which simplifies to 2 t 3 + 14 t 2 + 167 t + 1830 2t^3+14t^2+167t+1830 . The desired quantity is ( α + 1 ) ( β + 1 ) ( γ + 1 ) = 1830 2 = 915 -(\alpha+1)(\beta +1)(\gamma +1) =\frac{1830}{2}=915 .

A quicker way to use the transformation without lots of multiplying is: Write 2 x 3 + 20 x 2 + 201 x + 2013 k 1 ( x + 1 ) 3 + k 2 ( x + 1 ) 2 + k 3 ( x + 1 ) + k 4 2x^3+20x^2+201x+2013 \equiv k_1(x+1)^3+k_2(x+1)^2+k_3(x+1)+k_4 (which is the same as k 1 ( t 3 ) + k 2 ( t 2 ) + k 3 ( t ) + k 4 k_1(t^3)+k_2(t^2)+k_3(t)+k_4 ). Now to find the coefficients, consider dividing the polynomial by ( x + 1 ) (x+1) , the remainder upon division by this will be k 4 k_4 but since the polynomials above are equivalent, k 4 k_4 will be equal to the remainder when 2 x 3 + 20 x 2 + 201 x + 2013 2x^3+20x^2+201x+2013 is divided by ( x + 1 ) (x+1) . This can be repeated to quickly with synthetic division to find the rest of the coefficients.

NERDS

Ryan NOOB - 7 years, 6 months ago

on multiplying the expression we get -(αβ√+ αβ+ β√+ α√+ α+ β+ √+1) now calculating the values for cubic polynomial αβ√= −2013/2 αβ+ β√+ α√= 201/2 α+ β+ √= −10 by substitution we get 915

William Isoroku
Jan 14, 2015

Expanding gives: ( α + 1 ) ( β + 1 ) ( γ + 1 ) = ( ( α β γ ) + ( α β + α γ + β γ ) + ( α + β + γ ) + 1 ) -(\alpha +1)(\beta +1)(\gamma +1)=-((\alpha \beta \gamma )+(\alpha \beta +\alpha \gamma +\beta \gamma )+(\alpha +\beta +\gamma )+1)

By V i e t a s F o r m u l a s Vieta's\:Formulas : ( ( α β γ ) + ( α β + α γ + β γ ) + ( α + β + γ ) + 1 ) = ( 2013 2 + 201 2 + 20 2 + 1 ) = 915 -((\alpha \beta \gamma )+(\alpha \beta +\alpha \gamma +\beta \gamma )+(\alpha +\beta +\gamma )+1)=-(\frac{-2013}{2}+\frac{201}{2}+\frac{-20}{2}+1)=\boxed{915}

Abubakarr Yillah
Jan 6, 2014

From the given equation a = 2 , b = 20 , c = 201 , d = 2013 {a}={2}, {b}={20}, {c}={201}, {d}={2013}

Thus α + β + γ = b a = 20 2 = 10 \alpha+\beta+\gamma=\frac{-b}{a}=\frac{-20}{2}={-10}

α β γ = c a = 201 2 \alpha\beta\gamma=\frac{c}{a}=\frac{201}{2}

and α β + α γ + β γ = d a = 2013 2 \alpha\beta+\alpha\gamma+\beta\gamma=\frac{-d}{a}=\frac{-2013}{2}

Expanding the given expression we get ( ( α + β + γ ) + ( α β γ ) + ( α β + α γ + β γ ) + 1 ) -((\alpha+\beta+\gamma)+(\alpha\beta\gamma)+(\alpha\beta+\alpha\gamma+\beta\gamma)+{1})

substituting we get ( ( 10 ) + ( 201 2 ) + ( 2013 2 ) ) -(({-10})+(\frac{201}{2})+(\frac{-2013}{2}))

which gives ( 915 ) -({-915})

which equals 915 \boxed{915}

Pankaj Joshi
Jan 5, 2014

As α \alpha , β \beta and γ \gamma are roots of polynomial

So, f ( x ) f(x) = k ( x α ) k(x-\alpha) ( x β ) (x-\beta) ( x γ ) x-\gamma)

where k = 2 k=2 as the leading coefficient of the polynomial is 2 2

Putting x = ( 1 ) x=(-1) ; we get f ( 1 ) f(-1) = 2 ( 1 + α ) -2(1+\alpha) ( 1 + β ) (1+\beta) ( 1 + γ ) 1+\gamma)

1830 = 2 ( 1 + α ) 1830 = -2(1+\alpha) ( 1 + β ) (1+\beta) ( 1 + γ ) 1+\gamma)

Thus, ( 1 + α ) -(1+\alpha) ( 1 + β ) 1+\beta) ( 1 + γ ) = 1830 / 2 = 915 1+\gamma) = 1830/2 = \boxed {915}

Ryan Phua
Dec 14, 2013

Note that ( α + 1 ) ( β + 1 ) ( γ + 1 ) = ( α β γ + ( α β + α γ + β γ ) + ( α + β + γ ) + 1 ) -(\alpha + 1)(\beta + 1)(\gamma +1) = -(\alpha\beta\gamma + (\alpha\beta + \alpha\gamma + \beta\gamma) + (\alpha + \beta + \gamma) +1) .

By the Vieta formulas of f ( x ) f(x) , the values of α β γ \alpha\beta\gamma , ( α β + α γ + β γ ) (\alpha\beta + \alpha\gamma + \beta\gamma) and ( α + β + γ ) (\alpha + \beta + \gamma) are 2013 2 -\frac {2013}{2} , 201 2 \frac {201}{2} and 20 2 = 10 -\frac {20}{2} = -10 .

Therefore, the value of ( α + 1 ) ( β + 1 ) ( γ + 1 ) -(\alpha + 1)(\beta + 1)(\gamma +1) is:

( α + 1 ) ( β + 1 ) ( γ + 1 ) = ( α β γ + ( α β + α γ + β γ ) + ( α + β + γ ) + 1 ) -(\alpha + 1)(\beta + 1)(\gamma +1) = -(\alpha\beta\gamma + (\alpha\beta + \alpha\gamma + \beta\gamma) + (\alpha + \beta + \gamma) +1)

= ( 2013 2 + 201 2 10 + 1 = ( 915 ) = 915 = -(-\frac {2013}{2}+\frac {201}{2}-10+1 = -(-915) = \boxed {915}

Let roots of equation be x = α , β , γ x=\alpha,\beta,\gamma , Then its factors are ( x α ) , ( x β ) , ( x γ ) (x-\alpha)\;,(x-\beta)\;,(x-\gamma)

Then 2 x 3 + 20 x 2 + 201 x + 2013 = 2 ( x α ) ( x β ) ( x γ ) 2x^3+20x^2+201x+2013 = 2(x-\alpha)\cdot (x-\beta)\cdot (x-\gamma)

Now Put x = 1 x=-1 in above equation...

2 + 20 201 + 2013 = 2 ( 1 + α ) ( 1 + β ) ( 1 + γ ) -2+20-201+2013 = -2(1+\alpha)\cdot (1+\beta)\cdot (1+\gamma)

So ( 1 + α ) ( 1 + β ) ( 1 + γ ) = 915 (1+\alpha)\cdot (1+\beta)\cdot (1+\gamma) = 915

jagdish singh - 7 years, 6 months ago
Omar Pulido
Dec 1, 2013

We are given the polynomial : 2 x 3 + 20 x 2 + 201 x + 2013 2x^3+20x^2+201x+2013 .

Let the roots be α , β , γ \alpha, \beta, \gamma

We want to find ( α + 1 ) ( β + 1 ) ( γ + 1 ) - (\alpha + 1) (\beta +1) (\gamma +1)

Now we can expand ( α + 1 ) ( β + 1 ) ( γ + 1 ) - (\alpha + 1) (\beta +1) (\gamma +1) to get :

( α β γ + α β + α γ + β γ + α + β + γ + 1 ) - ( \alpha\beta\gamma + \alpha\beta + \alpha\gamma + \beta\gamma +\alpha + \beta + \gamma + 1 )

Now we use vieta's formula. (For more information visit : http://en.wikipedia.org/wiki/Vieta's_formulas )

Using vieta's we get that :

α β γ \alpha\beta\gamma = -2013/2

α β + α γ + β γ \alpha\beta + \alpha\gamma + \beta\gamma = 201/2

α + β + γ \alpha + \beta + \gamma = -20/2 = -10

And combining them (and adding one, don't forget to add the one) and multiplying by negative one, we get 915 \boxed {915}

Hemant Aggarwal
Nov 29, 2013

Let alpha = a , beta = b , gamma = c

Now, -(a+1)(b+1)(c+1) = -(a+b+c)-(ab+bc+ca)-abc-1

We have,

   (a+b+c) = -coefficient of x^2/coefficient of x^3 = -20/2    Therefore,          -(a+b+c) =  20/2 

    (ab+bc+ca) = coefficient of x/coefficient of x^3 = 201/2         Therefore, - (ab+bc+ca) = -201/2                                                                                 

      (abc) =  -constant term/coefficient of x^3 =  -2013/2                       Therefore,      (-abc) =  2013/2

Therefore, -(a+b+c)-(ab+bc+ca)-abc-1
= (20/2) -(201/2)+(2013/2)-1
= (20-201+2013-2)/2 = 1830/2 = 915

            so, value of -(a+1)(b+1)(c+1) = 915
Rafael Muzzi
Nov 25, 2013

-(a+1)(b+1)(c+1)= -(abc+ab+ac+bc+a+b+c+1)

Usando as relações de Girard

abc=-2013/2
ab+ac+bc=201/2
a+b+c=-20/2

Substituindo na formula:

-(-2013/2+201/2-20/2+2/2)= -(-1830/2)= +915

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...