Complex City 3

Algebra Level 5

n = 1 66 4 ω 4 n + 3 ω 3 n + 3 ω 2 n 5 ω 2 n + 3 ω n + 3 \large\sum_{n=1}^{66}\frac{4ω^{4n}+3ω^{3n}+3ω^{2n}}{5ω^{2n}+3ω^{n}+3}

If ω \omega is a non-real cube root of unity, find the value of the summation above.


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 21, 2015

T n = 4 ω 4 n + 3 ω 3 n + 3 ω 2 n 5 ω 2 n + 3 ω n + 3 = 4 ( 1 ˙ ω n ) + 3 ( 1 ) + 3 ω 2 n 5 ω 2 n + 3 ω n + 3 [ ω 3 n = 1 ] = ω n + 3 ( 1 + ω n + ω 2 n ) 2 ω 2 n + 3 ( 1 + ω n + ω 2 n ) [There are 3 cases.] = { n 1 ( m o d 3 ) : ω + 3 ( 1 + ω + ω 2 ) 2 ω 2 + 3 ( 1 + ω + ω 2 ) = ω + 3 ( 0 ) 2 ω 2 + 3 ( 0 ) = 1 2 ω 2 [ 1 + ω + ω 2 = 0 ] n 2 ( m o d 3 ) : ω 2 + 3 ( 1 + ω 2 + ω 4 ) 2 ω 4 + 3 ( 1 + ω 2 + ω 4 ) = ω 2 + 3 ( 1 + ω 2 + ω ) 2 ω + 3 ( 1 + ω 2 + ω ) = 1 2 ω n 0 ( m o d 3 ) : ω 0 + 3 ( 1 + ω 0 + ω 0 ) 2 ω 0 + 3 ( 1 + ω 0 + ω 0 ) = 1 + 3 ( 3 ) 2 + 3 ( 3 ) = 10 11 \begin{aligned} T_n & = \frac{4 \color{#3D99F6}{ \omega ^{4n}} + 3 \color{#3D99F6} {\omega ^{3n}} + 3\omega^{2n}}{5\omega^{2n} + 3 \omega ^{n} + 3} \\ & = \frac{4 \color{#3D99F6}{ (1\dot{} \omega ^{n})} + 3 \color{#3D99F6} {(1)} + 3\omega^{2n}}{5\omega^{2n} + 3 \omega ^{n} + 3} \quad \quad \color{#3D99F6} {[\omega^{3n}=1]} \\ & = \frac{\omega ^{n} + 3 (1 + \omega ^{n} + \omega^{2n})}{2\omega^{2n} + 3 (1 + \omega ^{n} + \omega^{2n})} \quad \quad \color{#3D99F6} {\text{[There are 3 cases.]}} \\ & = \begin{cases} n \equiv 1 \pmod{3}: & \dfrac{\omega + 3 (\color{#3D99F6}{1 + \omega + \omega^{2}})}{2\omega^{2} + 3 (\color{#3D99F6}{1 + \omega + \omega^{2}})} \\ & = \dfrac{\omega + 3 (\color{#3D99F6}{0})}{2\omega^{2} + 3 (\color{#3D99F6}{0})} = \boxed{\frac{1}{2} \omega^2}\quad \quad \color{#3D99F6} {[1 + \omega + \omega^{2}=0]} \\ n \equiv 2 \pmod{3}: & \dfrac{\omega^2 + 3 (1 + \omega^2 + \color{#3D99F6}{\omega^4})}{2\color{#3D99F6}{\omega^4} + 3 (1 + \omega^2 + \color{#3D99F6}{\omega^4})} \\ & = \dfrac{\omega^2 + 3 (1 + \omega^2 + \color{#3D99F6}{\omega})}{2\color{#3D99F6}{\omega} + 3 (1 + \omega^2 + \color{#3D99F6}{\omega})} = \boxed{\frac{1}{2} \omega} \\ n \equiv 0 \pmod{3}: & \dfrac{\omega^0 + 3 (1 + \omega^0 + \omega^0)}{2 \omega^0 + 3 (1 + \omega^0 + \omega^0)} \\ & = \dfrac{1 + 3(3)}{2 + 3(3)} = \boxed{\frac{10}{11}} \end{cases} \end{aligned}

n = 1 66 T n = k = 1 22 ( 1 2 ω 2 + 1 2 ω + 10 11 ) = k = 1 22 ( 1 2 + 10 11 ) = 22 ( 9 22 ) = 9 \begin{aligned} \Rightarrow \sum_{n=1}^{66} T_n & = \sum_{k=1}^{22} \left( \frac{1}{2} \omega^2 + \frac{1}{2} \omega + \frac{10}{11} \right) \\ & = \sum_{k=1}^{22} \left(- \frac{1}{2} + \frac{10}{11} \right) \\ & = 22 \left( \frac{9}{22} \right) = \boxed{9} \end{aligned}

Moderator note:

Simple standard approach.

Ayush Verma
Jul 18, 2015

T n = 4 ω 4 n + 3 ω 3 n + 3 ω 2 n 5 ω 2 n + 3 ω n + 3 = 3 ω 2 n + 4 ω n + 3 5 ω 2 n + 3 ω n + 3 ( a s ω 3 n = 1 ) = ω n + 3 ( ω 2 n + ω n + 1 ) 2 ω 2 n + 3 ( ω 2 n + ω n + 1 ) { T }_{ n }=\cfrac { { 4\omega }^{ 4n }+3{ \omega }^{ 3n }+3{ \omega }^{ 2n } }{ { 5\omega }^{ 2n }+3{ \omega }^{ n }+3 } =\cfrac { 3{ \omega }^{ 2n }+4{ \omega }^{ n }+3 }{ { 5\omega }^{ 2n }+3{ \omega }^{ n }+3 } \quad \left( as\quad { \omega }^{ 3n }=1 \right) \\ \\ =\cfrac { { \omega }^{ n }+3\left( { \omega }^{ 2n }+{ \omega }^{ n }+1 \right) }{ { 2\omega }^{ 2n }+3\left( { \omega }^{ 2n }+{ \omega }^{ n }+1 \right) }

1.If n=3m+1

ω n = ω T 3 m + 1 = ω + 3 ( ω 2 + ω + 1 ) 2 ω 2 + 3 ( ω 2 + ω + 1 ) = ω 2 2 ( a s ω 3 = 1 , ω 2 + ω + 1 = 0 ) \Rightarrow { \omega }^{ n }=\omega \\ \\ \Rightarrow { T }_{ 3m+1 }=\cfrac { \omega +3\left( { \omega }^{ 2 }+{ \omega }+1 \right) }{ { 2\omega }^{ 2 }+3\left( { \omega }^{ 2 }+{ \omega }+1 \right) } \\ \\ =\cfrac { { \omega }^{ 2 } }{ 2 } \quad \left( as\quad { \omega }^{ 3 }=1,{ \omega }^{ 2 }+{ \omega }+1=0 \right)

2.If n=3m+2

ω n = ω 2 T 3 m + 2 = ω 2 + 3 ( ω 4 + ω 2 + 1 ) 2 ω 4 + 3 ( ω 4 + ω 2 + 1 ) = ω 2 ( a s ω 3 = 1 , ω 4 + ω 2 + 1 = 0 ) \Rightarrow { \omega }^{ n }={ \omega }^{ 2 }\\ \\ \Rightarrow { T }_{ 3m+2 }=\cfrac { { \omega }^{ 2 }+3\left( { \omega }^{ 4 }+{ \omega }^{ 2 }+1 \right) }{ { 2\omega }^{ 4 }+3\left( { \omega }^{ 4 }+{ \omega }^{ 2 }+1 \right) } \\ \\ =\cfrac { { \omega } }{ 2 } \quad \left( as\quad { \omega }^{ 3 }=1,{ \omega }^{ 4 }+{ \omega }^{ 2 }+1=0 \right)

3.If n=3m+3

ω n = 1 T 3 m + 3 = 1 + 3 ( 1 + 1 + 1 ) 2 + 3 ( 1 + 1 + 1 ) = 10 11 n = 1 66 T n = m = 0 22 ( T 3 m + 1 + T 3 m + 2 + T 3 m + 3 ) = 22 ( ω 2 2 + ω 2 + 10 11 ) = 22 ( 1 2 + 10 11 ) = 22 ( 9 22 ) = 9 \Rightarrow { \omega }^{ n }=1\\ \\ \Rightarrow { T }_{ 3m+3 }=\cfrac { 1+3\left( 1+1+1 \right) }{ 2+3\left( 1+1+1 \right) } =\cfrac { 10 }{ 11 } \\ \\ \therefore \sum _{ n=1 }^{ 66 }{ { T }_{ n }= } \sum _{ m=0 }^{ 22 }{ \left( { T }_{ 3m+1 }+{ T }_{ 3m+2 }+{ T }_{ 3m+3 } \right) } \\ \\ =22\left( \cfrac { { \omega }^{ 2 } }{ 2 } +\cfrac { { \omega } }{ 2 } +\cfrac { 10 }{ 11 } \right) \\ \\ =22\left( \cfrac { { -1 } }{ 2 } +\cfrac { 10 }{ 11 } \right) =22\left( \cfrac { 9 }{ 22 } \right) =9

please tell me where i made mistake?

Ayush Verma - 5 years, 11 months ago

Log in to reply

Even I got that.I think question is flawed because omega square cannot be removed and how did you solve this if your answer is different?

shivamani patil - 5 years, 11 months ago

Log in to reply

It was lucky guess.

It was asking for integer answer which i was not getting.

1st guess=(11)(10/11)-11=-1 (incorrect)

2nd guess=(22)(10/11)-11=9 (lucky)

Ayush Verma - 5 years, 11 months ago

Log in to reply

@Ayush Verma But I did the same as you did what do you think question is wrong ?

shivamani patil - 5 years, 11 months ago

Log in to reply

@Shivamani Patil Yes,I reported two days ago but not resolved yet.

Ayush Verma - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...