Complex Complex Numbers !!

Algebra Level 2

Z 1 = Z 2 = Z 3 = 1 Z 1 + 1 Z 2 + 1 Z 3 = 1 |Z_{1}| = |Z_{2}| = |Z_{3}| = \Bigg|\dfrac{1}{Z_1} + \dfrac{1}{Z_{2}} + \dfrac{1}{Z_{3}} \Bigg| = 1

If Z 1 , Z 2 , Z 3 Z_{1} , Z_{2} , Z_{3} are complex numbers in the argand plane satisfying the above equalities, find the value of:

Z 1 + Z 2 + Z 3 = ? \bigg|Z_{1} + Z_{2} + Z_{3} \bigg| = \ ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

|{ Z }_{ 1 }|\quad =\quad |{ Z }_{ 2 }|\quad =\quad |{ Z }_{ 3 }|\quad =\quad 1\\ \\ As\quad { |Z| }^{ 2 }\quad =\quad Z\quad \times \quad \bar { Z } \quad =\quad 1,\quad where\quad \bar { Z } \quad is\quad conjugate\quad of\\ \\ Z\\ \\ So,\quad \bar { { Z }_{ 1 } } \quad =\quad \frac { 1 }{ { Z }_{ 1 } } ;\quad \bar { { Z }_{ 2 } } \quad =\quad \frac { 1 }{ { Z }_{ 2 } } ;\quad \bar { { Z }_{ 3 } } \quad =\quad \frac { 1 }{ { Z }_{ 3 } } \quad ----1.\\ \\ Therefore,\quad |\frac { 1 }{ { Z }_{ 1 } } +\frac { 1 }{ { Z }_{ 2 } } +\frac { 1 }{ { Z }_{ 3 } } |\quad =\quad 1\\ \\ From\quad 1;\\ |\bar { { Z }_{ 1 } } +\bar { { Z }_{ 2 } } +\bar { { Z }_{ 3 } } |\quad =\quad 1\\ Now,\quad remember\quad this\quad equation.\\ \\ Here\quad comes\quad the\quad tricky\quad part,\\ \\ Let\quad Re({ Z }_{ 1 }+{ Z }_{ 2 }+{ Z }_{ 3 })\quad =\quad X\\ And\quad Im({ Z }_{ 1 }+{ Z }_{ 2 }+{ Z }_{ 3 })\quad =\quad Y\\ \\ Therefore\quad Re(\bar { { Z }_{ 1 } } +\bar { { Z }_{ 2 } } +\bar { { Z }_{ 3 } } )\quad =\quad X\\ But,\quad Im(\bar { { Z }_{ 1 } } +\bar { { Z }_{ 2 } } +\bar { { Z }_{ 3 } } )\quad =\quad -Y\\ \\ Clearly,\quad |{ Z }_{ 1 }+{ Z }_{ 2 }+{ Z }_{ 3 }|\quad =\quad \sqrt { { X }^{ 2 }+{ Y }^{ 2 } } \quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \sqrt { { X }^{ 2 }+{ (-Y) }^{ 2 } } \quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad |\bar { { Z }_{ 1 } } +\bar { { Z }_{ 2 } } +\bar { { Z }_{ 3 } } |\\ But\quad |\bar { { Z }_{ 1 } } +\bar { { Z }_{ 2 } } +\bar { { Z }_{ 3 } } |\quad =\quad 1\\ So,\quad |{ Z }_{ 1 }+{ Z }_{ 2 }+{ Z }_{ 3 }|\quad =\quad 1\\

CHEERS!!:):)

I don't think Z = Z × Z ˉ |Z| = Z \times \bar{Z} is correct. Rather Z 2 = Z × Z ˉ |Z|^{2} = Z \times \bar{Z} is correct . So your first step itself is not correct, check it again mate !! However it doesn't affect the solution because 1 2 = 1 1^{2} = 1

Ayush Parasar - 6 years, 5 months ago

Log in to reply

Ooh!! Sorry mate...and thanks...i forgot to mention that !:)

A Former Brilliant Member - 6 years, 5 months ago

Let z n = a n + b n i z_n=a_n+b_ni , where n = 1 , 2 , 3 n=1,2,3 .

Then z n = 1 a n 2 + b n 2 = a n 2 + b n 2 = 1 |z_n| = 1 \quad \Rightarrow \sqrt{a_n^2 + b_n^2} = a_n^2 + b_n^2 = 1

Now, 1 z n = 1 a n + b n i = a n b n i ( a n + b n i ) ( a n b n i ) \dfrac {1}{z_n} = \dfrac {1}{a_n+b_ni} = \dfrac {a_n-b_ni}{(a_n+b_ni)(a_n-b_ni)}

= a n b n i a n 2 + b n 2 = a n b n i 1 = a n b n i \quad \quad \quad \quad = \dfrac {a_n-b_ni}{a_n^2 + b_n^2} = \dfrac {a_n-b_ni}{1} = a_n-b_ni

1 z 1 + 1 z 2 + 1 z 3 = a 1 b 1 i + a 2 b 2 i + a 3 b 3 i \Rightarrow \dfrac {1}{z_1}+\dfrac {1}{z_2}+\dfrac {1}{z_3} = a_1-b_1i + a_2-b_2i + a_3-b_3i

= ( a 1 + a 2 + a 3 ) ( b 1 + b 2 + b 3 ) i \quad \quad \quad \quad \quad \quad \quad \quad = (a_1 + a_2 + a_3) - (b_1 + b_2 + b_3)i

Now 1 z 1 + 1 z 2 + 1 z 3 = 1 \left|\dfrac {1}{z_1}+\dfrac {1}{z_2}+\dfrac {1}{z_3} \right| = 1

( a 1 + a 2 + a 3 ) 2 + ( b 1 + b 2 + b 3 ) 2 = 1 \Rightarrow \sqrt{(a_1 + a_2 + a_3)^2 + (b_1 + b_2 + b_3)^2} = 1

Also z 1 + z 2 + z 3 = ( a 1 + a 2 + a 3 ) 2 + ( b 1 + b 2 + b 3 ) 2 = 1 |z_1+z_2+z_3| = \sqrt{(a_1 + a_2 + a_3)^2 + (b_1 + b_2 + b_3)^2} = \boxed{1}

Sir Can you please elaborate the last line: | z 1 + z 2 + z z_{1}+z_{2}+z + 3 |

Because I am confuse about 3 and z

Syed Baqir - 5 years, 8 months ago

Log in to reply

Sorry, it was a typo. It should be z 1 + z 2 + z 3 |z_1+z_2+z_3| .

Chew-Seong Cheong - 5 years, 8 months ago

Log in to reply

ahh, Thanks .

SIr, if we expand (a1 + a2 + a3 )^2 + (b1 + b2 + b3 ) ^2

will it give us Z1 , Z2 and Z3 respectively ?

Syed Baqir - 5 years, 8 months ago

Log in to reply

@Syed Baqir No, z 1 z_1 , z 2 z_2 and z 3 z_3 are complex numbers. They are with imaginary part. z n = a n + b n i z_n = a_n + b_n \color{#D61F06}{i} ; i = 1 \color{#D61F06}{i} = \sqrt{-1} is the imaginary unit. a n a_n and b n b_n are real numbers.

Chew-Seong Cheong - 5 years, 8 months ago

Log in to reply

@Chew-Seong Cheong Yes, I was wondering because they were squared and what I did was resolving brackets and getting some quadratics .

Syed Baqir - 5 years, 8 months ago
Ravi Dwivedi
Jul 6, 2015

Moderator note:

Good approach, switching between the alternative forms of complex numbers to work out this problem.

This solution is good and simple.Thumbs up,mate!!

Saaket Sharma - 5 years, 8 months ago

Just to solve it quickly,It can be easily seen that 1,i,-i satisfy the given equation.Hence the answer is |1+i-i|=1.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...