∣ Z 1 ∣ = ∣ Z 2 ∣ = ∣ Z 3 ∣ = ∣ ∣ ∣ ∣ ∣ Z 1 1 + Z 2 1 + Z 3 1 ∣ ∣ ∣ ∣ ∣ = 1
If Z 1 , Z 2 , Z 3 are complex numbers in the argand plane satisfying the above equalities, find the value of:
∣ ∣ ∣ ∣ Z 1 + Z 2 + Z 3 ∣ ∣ ∣ ∣ = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I don't think ∣ Z ∣ = Z × Z ˉ is correct. Rather ∣ Z ∣ 2 = Z × Z ˉ is correct . So your first step itself is not correct, check it again mate !! However it doesn't affect the solution because 1 2 = 1
Log in to reply
Ooh!! Sorry mate...and thanks...i forgot to mention that !:)
Let z n = a n + b n i , where n = 1 , 2 , 3 .
Then ∣ z n ∣ = 1 ⇒ a n 2 + b n 2 = a n 2 + b n 2 = 1
Now, z n 1 = a n + b n i 1 = ( a n + b n i ) ( a n − b n i ) a n − b n i
= a n 2 + b n 2 a n − b n i = 1 a n − b n i = a n − b n i
⇒ z 1 1 + z 2 1 + z 3 1 = a 1 − b 1 i + a 2 − b 2 i + a 3 − b 3 i
= ( a 1 + a 2 + a 3 ) − ( b 1 + b 2 + b 3 ) i
Now ∣ ∣ ∣ ∣ z 1 1 + z 2 1 + z 3 1 ∣ ∣ ∣ ∣ = 1
⇒ ( a 1 + a 2 + a 3 ) 2 + ( b 1 + b 2 + b 3 ) 2 = 1
Also ∣ z 1 + z 2 + z 3 ∣ = ( a 1 + a 2 + a 3 ) 2 + ( b 1 + b 2 + b 3 ) 2 = 1
Sir Can you please elaborate the last line: | z 1 + z 2 + z + 3 |
Because I am confuse about 3 and z
Log in to reply
Sorry, it was a typo. It should be ∣ z 1 + z 2 + z 3 ∣ .
Log in to reply
ahh, Thanks .
SIr, if we expand (a1 + a2 + a3 )^2 + (b1 + b2 + b3 ) ^2
will it give us Z1 , Z2 and Z3 respectively ?
Log in to reply
@Syed Baqir – No, z 1 , z 2 and z 3 are complex numbers. They are with imaginary part. z n = a n + b n i ; i = − 1 is the imaginary unit. a n and b n are real numbers.
Log in to reply
@Chew-Seong Cheong – Yes, I was wondering because they were squared and what I did was resolving brackets and getting some quadratics .
Good approach, switching between the alternative forms of complex numbers to work out this problem.
This solution is good and simple.Thumbs up,mate!!
Just to solve it quickly,It can be easily seen that 1,i,-i satisfy the given equation.Hence the answer is |1+i-i|=1.
Problem Loading...
Note Loading...
Set Loading...
|{ Z }_{ 1 }|\quad =\quad |{ Z }_{ 2 }|\quad =\quad |{ Z }_{ 3 }|\quad =\quad 1\\ \\ As\quad { |Z| }^{ 2 }\quad =\quad Z\quad \times \quad \bar { Z } \quad =\quad 1,\quad where\quad \bar { Z } \quad is\quad conjugate\quad of\\ \\ Z\\ \\ So,\quad \bar { { Z }_{ 1 } } \quad =\quad \frac { 1 }{ { Z }_{ 1 } } ;\quad \bar { { Z }_{ 2 } } \quad =\quad \frac { 1 }{ { Z }_{ 2 } } ;\quad \bar { { Z }_{ 3 } } \quad =\quad \frac { 1 }{ { Z }_{ 3 } } \quad ----1.\\ \\ Therefore,\quad |\frac { 1 }{ { Z }_{ 1 } } +\frac { 1 }{ { Z }_{ 2 } } +\frac { 1 }{ { Z }_{ 3 } } |\quad =\quad 1\\ \\ From\quad 1;\\ |\bar { { Z }_{ 1 } } +\bar { { Z }_{ 2 } } +\bar { { Z }_{ 3 } } |\quad =\quad 1\\ Now,\quad remember\quad this\quad equation.\\ \\ Here\quad comes\quad the\quad tricky\quad part,\\ \\ Let\quad Re({ Z }_{ 1 }+{ Z }_{ 2 }+{ Z }_{ 3 })\quad =\quad X\\ And\quad Im({ Z }_{ 1 }+{ Z }_{ 2 }+{ Z }_{ 3 })\quad =\quad Y\\ \\ Therefore\quad Re(\bar { { Z }_{ 1 } } +\bar { { Z }_{ 2 } } +\bar { { Z }_{ 3 } } )\quad =\quad X\\ But,\quad Im(\bar { { Z }_{ 1 } } +\bar { { Z }_{ 2 } } +\bar { { Z }_{ 3 } } )\quad =\quad -Y\\ \\ Clearly,\quad |{ Z }_{ 1 }+{ Z }_{ 2 }+{ Z }_{ 3 }|\quad =\quad \sqrt { { X }^{ 2 }+{ Y }^{ 2 } } \quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \sqrt { { X }^{ 2 }+{ (-Y) }^{ 2 } } \quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad |\bar { { Z }_{ 1 } } +\bar { { Z }_{ 2 } } +\bar { { Z }_{ 3 } } |\\ But\quad |\bar { { Z }_{ 1 } } +\bar { { Z }_{ 2 } } +\bar { { Z }_{ 3 } } |\quad =\quad 1\\ So,\quad |{ Z }_{ 1 }+{ Z }_{ 2 }+{ Z }_{ 3 }|\quad =\quad 1\\
CHEERS!!:):)