Complex solutions

Algebra Level 4

x , y x, y and z z are complex numbers such that

{ x + y + z = 20 ( x y ) 2 + ( y z ) 2 + ( z x ) 2 = x y z . \begin{cases} x + y + z & = 20 \\ (x-y)^2 + (y-z)^2 + (z-x) ^ 2 & = xyz.\\ \end{cases}

What is the value of x 3 + y 3 + z 3 x y z \frac{ x^3 + y^3 + z^3} { xyz} ?


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

37 solutions

Duc Minh Phan
Aug 18, 2013

Since the given conditions, we have: ( x + y + z ) ( ( x y ) 2 + ( y z ) 2 + ( z x ) 2 ) = 20 x y z . (x+y+z)\big( (x-y)^2 + (y-z)^2 + (z-x)^2 \big) = 20xyz. Or equivalently, ( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) = 10 x y z . (x+y+z)(x^2+y^2+z^2-xy-yz-zx) = 10xyz. On the other hand, we have ( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) = x 3 + y 3 + z 3 3 x y z . (x+y+z)(x^2+y^2+z^2-xy-yz-zx) = x^3+y^3+z^3-3xyz. Therefore, x 3 + y 3 + z 3 = 13 x y z x^3+y^3+z^3 = 13xyz and x 3 + y 3 + z 3 x y z = 13 \frac{ x^3 + y^3 + z^3}{xyz} = 13 .

Moderator note:

Nicely done!

Same method applied.

Hrishik Mukherjee - 6 years, 2 months ago

I did the same ...

Akshat Sharda - 5 years, 9 months ago

Same method using the identities

Aayush Mani - 5 years ago

In problems like this, I find it convenient to express everything using the possible symmetric polynoms of three variables, up to the appropriate degree. I have never seen the relations between them tabulated anywhere, but you can produce them whenever they are needed. We have ( x + y + z ) 2 = x 2 + y 2 + z 2 + 2 ( x y + y z + z x ) (x+y+z)^2 = x^2+y^2+z^2 + 2(xy+yz+zx) . ( x + y + z ) 3 = x 3 + y 3 + z 3 + 3 ( x y 2 + y x 2 + x z 2 + z x 2 + y z 2 + z y 2 ) + 3 x y z (x+y+z)^3 = x^3+y^3+z^3 + 3(xy^2+yx^2+xz^2+zx^2+yz^2+zy^2) + 3xyz . So far, we can call x + y + z = A x+y+z = A , x 2 + y 2 + z 2 = B x^2+y^2+z^2 = B , x y + y z + z y = C xy+yz+zy = C , x 3 + y 3 + z 3 = D x^3+y^3+z^3 = D , x y 2 + y x 2 + x z 2 + z x 2 + y z 2 + z y 2 = E xy^2+yx^2+xz^2+zx^2+yz^2+zy^2 = E , x y z = F xyz = F . So we have A 2 = B + 2 C A^2 = B+2C , A 3 = D + 3 E + 3 F A^3=D+3E+3F . Two more relations of order 3 or less turn out to be A B = D + E AB = D+E and A C = E + 3 F AC=E+3F . With A = 20 A = 20 and what comes from expanding the second equation in the problem, substituting E, we get four linear equations for B,C,D and E, and so can find all values. Actually, we can use just two of the equations to get D = 13 F D = 13F , which is what the other solvers here have done by various ingenious inspection.

Arndt Jonasson - 7 years, 9 months ago

Log in to reply

Symetric polynomials were (unhappily) not needed here. Shorter proofs provided above.

Gabriel Romon - 7 years, 9 months ago

Log in to reply

It's something to try while you're working on the solution though. I'm sure the short proofs weren't the first thing the posters tried.

Matt McNabb - 7 years, 9 months ago

Did exactly in the same way......................

Abhisek Mohanty - 4 years, 11 months ago

Did the same way ..

Anshuman Shreshth - 4 years, 9 months ago

I did the process in my mind!

Hrithik Nambiar - 5 years, 8 months ago

Log in to reply

same method in exactly 21 seconds!!

shuvam keshari - 5 years, 8 months ago

let's assume x=0,and we can get y+z=20,yz=400/3,has solution 10+10i/sqrt(3) and 10-10i/sqrt(3) fit for both condition.so at this situation the answer is NO

zhe zhang - 7 years, 9 months ago
Cody Johnson
Aug 18, 2013

We know that x 3 + y 3 + z 3 3 x y z = 1 2 ( x + y + z ) ( ( x y ) 2 + ( x z ) 2 + ( y z ) 2 ) = 10 x y z x^3+y^3+z^3-3xyz=\frac{1}{2}(x+y+z)((x-y)^2+(x-z)^2+(y-z)^2) = 10xyz . Dividing both sides by x y z xyz and adding 3 3 to both sides gives x 3 + y 3 + z 3 x y z = 13 \frac{x^3+y^3+z^3}{xyz}=\boxed{13} .

If you didn't know the first fact, I recommend Titu Andreescu's "Mathematical Olympiad Treasures" to you. Great read.

Moderator note:

Nicely done!

did the same thing !!

Einstein Nafis - 4 years, 11 months ago
Varun Kaushik
Aug 19, 2013

x 3 + y 3 + z 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) + 3 x y z x y z = ( 20 ) ( x y z 2 ) + 3 x y z x y z = 10 + 3 = 13 \frac{x^3 + y^3 + z ^3}{xyz} \\ = \frac{(x+y+z)(x^2 + y^2 + z^2 - xy - yz -zx) + 3xyz}{xyz} \\ = \frac{(20)(\frac{xyz}{2}) + 3xyz}{xyz} = 10 + 3 = 13

Moderator note:

Nicely done!

So many correct and nice solutions, that it is impossible to choose the best.

I did this the exact same way

Anik Chakrabarty - 7 years, 7 months ago

Did the same mentally

Kushagra Sahni - 5 years, 8 months ago

Did the same.

Subhra Patra - 4 years, 5 months ago
Obwj Obid
Aug 21, 2013

We use the identity, x 3 + y 3 + z 3 3 x y z = 1 2 ( x + y + z ) ( ( x y ) 2 + ( y z ) 2 + ( z x ) 2 ) x^3+y^3+z^3-3xyz=\frac{1}{2}(x+y+z)((x-y)^2+(y-z)^2+(z-x)^2) .Then x 3 + y 3 + z 3 x y z = 1 2 ( x + y + z ) + 3 = 10 + 3 = 13 \frac{x^3+y^3+z^3}{xyz}=\frac{1}{2}(x+y+z)+3=10+3=13 .

Arnab Animesh Das
Aug 20, 2013

x 3 + y 3 + z 3 x y z \frac{x^3+y^3+z^3}{xyz} = ( x + y + z ) { ( x y ) 2 + ( y z ) 2 + ( z x ) 2 } 2 ( x y z ) + 3 =\frac{(x+y+z)\{(x-y)^2+(y-z)^2+(z-x)^2\}}{2*(xyz)}+3 Putting the appropriate values as given in the problem, we get, x 3 + y 3 + z 3 x y z = 13 \frac{x^3+y^3+z^3}{xyz}=\fbox{13}

that is exactly wat I did!! cool

Utkarsh Mehra - 7 years, 9 months ago
Haroun Meghaichi
Aug 19, 2013

First note that : ( x + y + z ) [ ( x y ) 2 + ( x z ) 2 + ( y z ) 2 ] = x 3 + y 3 + z 3 3 x y z . (x+y+z)\left[(x-y)^2+(x-z)^2+(y-z)^2\right]=x^3+y^3+z^3-3 x y z.

Multiply the second equation with x + y + z x+y+z , to get : 2 ( x 3 + y 3 + z 3 3 x y z ) = 20 x y z 2 ( x 3 + y 3 + z 3 ) = 26 x y z . 2(x^3+y^3+z^3-3x y z)=20x y z \Longrightarrow 2(x^3+y^3+z^3)=26x y z. From here we see that : x 3 + y 3 + z 3 x y z = 26 2 = 13 . \frac{x^3+y^3+z^3}{xy z}= \frac{26}{2} = \boxed{13}.

Sam Bealing
Mar 21, 2016

My solution using polynomials: Let x + y + z = p , x y + z x + y z = q , x y z = r x+y+z=p,xy+zx+yz=q,xyz=r Equation 1 gives that p = 20 p=20 Equation 2 gives on expansion: 2 ( x 2 + y 2 + z 2 ) 2 ( x y + y z + z x ) = x y z x 2 + y 2 + z 2 = r + 2 q 2 2(x^2+y^2+z^2)-2(xy+yz+zx)=xyz \Rightarrow x^2+y^2+z^2=\frac{r+2q}{2}

Let P ( m ) P(m) be a polynomial such that P ( m ) = ( m x ) ( m y ) ( m z ) = m 3 p m 2 + q m r P(m)=(m-x)(m-y)(m-z)=m^3-p m^2+q m-r so P ( x ) = P ( y ) = P ( z ) = 0 P(x)=P(y)=P(z)=0 .

P ( x ) = 0 x 3 p x 2 + q x r = 0 x 3 = p x 2 q x + r P(x)=0 \Rightarrow x^3-px^2+qx-r=0 \Rightarrow x^3=px^2-qx+r and similarly for y , z y,z

Adding the three equations together gives: x 3 + y 3 + z 3 = p ( x 2 + y 2 + z 2 ) ( x + y + z ) + 3 r = p ( r + 2 q 2 ) p q + 3 r = p r + 6 r 2 x^3+y^3+z^3=p(x^2+y^2+z^2)-(x+y+z)+3r=p(\frac{r+2q}{2})-pq+3r=\frac{pr+6r}{2} by the earlier equation.

Hence we have: x 3 + y 3 + z 3 x y z = ( p r + 6 r 2 ) r = p + 6 2 = 20 + 6 2 = 13 \frac{x^3+y^3+z^3}{xyz}=\frac{(\frac{pr+6r}{2})}{r}=\frac{p+6}{2}=\frac{20+6}{2}=13

Your solution is really practical and inspiring. Not Until I looked at your solution did I realize that I had used such method before. I should have If I had noted that x+y+z xy+xz+yz xyz all make up this problem. Really nice :)

John Swift - 4 years, 11 months ago
Parth Thakkar
Oct 13, 2013

Observe that ( x + y + z ) 3 = ( x 3 ) + 3 ( x 2 ( y + z ) ) + 6 x y z = 2 ( x 3 ) + 3 ( x 2 ( x + y + z ) ) + 6 x y z ; Add and subtract 3 ( x 3 ) = 2 ( x 3 ) + 3 ( x + y + z ) ( x 2 ) + 6 x y z \begin{aligned} (x+y+z)^3 &= \sum (x^3) + 3\sum(x^2(y+z)) + 6xyz \\ &= -2\sum(x^3) + 3\sum( x^2( x+ y+ z) ) + 6xyz \text{; Add and subtract } 3\sum(x^3) \\ &= -2\sum(x^3) + 3(x+y+z) \sum( x^2 ) + 6xyz \\ \end{aligned} \\

Now, squaring the first equation and adding it to the second equation (given ones) gives us: 3 ( x 2 ) = 2 0 2 + x y z 3\sum( x^2 ) = 20^2 + xyz

Plugging this in the result we obtained gives: ( x + y + z ) 3 = 2 ( x 3 ) + ( x + y + z ) ( 2 0 2 + x y z ) + 6 x y z \begin{aligned} (x+y+z)^3 &= -2\sum(x^3) + (x+y+z)(20^2 + xyz) + 6xyz \end{aligned}

Simplifying and plugging the value of x + y + z = 20 x+y+z = 20 gives the answer as 13 13 .

Man! I had to think a heck lot for this :D

Michael Tang
Aug 20, 2013

Label the two given equations ( 1 ) (1) and ( 2 ) . (2). Expanding ( 2 (2 ) gives 2 ( x 2 + y 2 + z 2 ) 2 ( x y + x z + y z ) = x y z . ( 3 ) \qquad 2(x^2+y^2+z^2)- 2(xy+xz+yz) = xyz. \qquad (3) Now we square both sides of ( 1 ) (1) to get x 2 + y 2 + z 2 + 2 ( x y + x z + y z ) = 400. x^2+y^2+z^2+2(xy+xz+yz) = 400. We multiply this equation by 2 2 and subtract equation ( 3 ) (3) : 6 ( x y + x z + y z ) = 800 x y z . ( 4 ) \qquad 6(xy+xz+yz) = 800-xyz. \qquad (4)

At this point we return to equation ( 1 ) (1) , which we cube both sides of and factor: x 3 + y 3 + z 3 + 3 [ x y ( x + y ) + x z ( x + z ) + y z ( y + z ) ] x^3+y^3+z^3+3[xy(x+y)+xz(x+z)+yz(y+z)] + 6 x y z = 8000. +6xyz = 8000. Using equation ( 1 ) , (1), we can replace each of the sums x + y , x + z , y + z x+y,x+z,y+z with 20 z , 20 y , 20 x . 20-z,20-y,20-x. Therefore, we have x 3 + y 3 + z 3 + 3 [ x y ( 20 z ) + x z ( 20 y ) + y z ( 20 x ) ] x^3+y^3+z^3+3[xy(20-z)+xz(20-y)+yz(20-x)] + 6 x y z = 8000 + 6xyz = 8000 x 3 + y 3 + z 3 + 60 ( x y + x z + y z ) 3 x y z = 8000 x^3+y^3+z^3+60(xy+xz+yz) - 3xyz = 8000

We multiply equation ( 4 ) (4) by 10 10 to get 60 ( x y + x z + y z ) = 8000 10 x y z . 60(xy+xz+yz) = 8000 - 10xyz. Now we substitute into the previous equation: x 3 + y 3 + z 3 + 8000 10 x y z 3 x y z = 8000 , x^3+y^3+z^3+8000-10xyz-3xyz=8000, or x 3 + y 3 + z 3 = 13 x y z . x^3+y^3+z^3 = 13xyz. Thus, x 3 + y 3 + z 3 x y z = 13 . \dfrac{x^3+y^3+z^3}{xyz} = \boxed{13}.

That's a lot of work. You should have used this identity instead: x 3 + y 3 + z 3 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) x^3+y^3+z^3 - 3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx) , that would have made the solution to this problem really really short.

Aditya Parson - 7 years, 9 months ago

Log in to reply

Yeah, I should have, but I didn't know that equation exactly.

Michael Tang - 7 years, 9 months ago

we know that

x 3 + y 3 + z 3 = ( x + y + z ) 3 6 x y z 3 x y z ( x + y + z ) ( 1 x + 1 y + 1 z ) + 9 x y z x^{3}+y^{3}+z^{3}=(x+y+z)^{3}-6xyz-3xyz(x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})+9xyz

From two given equation we have

( x + y + z ) 3 3 x y z 1 6 = 1 x + 1 y + 1 z \frac{(x+y+z)^{3}}{3xyz}-\frac{1}{6}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}

hence

x 3 + y 3 + z 3 x y z = 2 0 3 x y z 6 ( 2 0 3 x y z 10 ) + 9 \frac{x^{3}+y^{3}+z^{3}}{xyz}=\frac{20^{3}}{xyz}-6-(\frac{20^{3}}{xyz}-10)+9

x 3 + y 3 + z 3 x y z = 13 \frac{x^{3}+y^{3}+z^{3}}{xyz}=\boxed{13}

Eraz Ahmed
Aug 25, 2013

We know that x^3+y^3+z^3-3xyz=(0.5)(x+y+z){(x−y)^2+(y−z)^2+(z−x)^2}
=>x^3+y^3+z^3-3xyz=10xyz(putting the values)
=>x^3+y^3+z^3=13xyz
=>(x^3+y^3+z^3)/xyz=13 . (sorry , i don't know how to use latex )


Toan Pham Quang
Aug 24, 2013

We have x 3 + y 3 + z 3 3 x y z = 1 2 ( x + y + z ) [ ( x y ) 2 + ( y z ) 2 + ( z x ) 2 ] x^3+y^3+z^3-3xyz= \frac 12 (x+y+z) \left[(x-y)^2+(y-z)^2+(z-x)^2 \right] . Thus, x 3 + y 3 + z 3 = 13 x y z x^3+y^3+z^3=13xyz

Ron van den Burg
Aug 24, 2013

sin a + sin b = 2 sin ( a + b 2 ) cos ( a b 2 ) \sin a + \sin b = 2 \sin (\frac {a+b}{2})\cos (\frac {a-b }{2})

Similarly for c c and d d . Adding both gives:

0 = sin a + sin b + sin c + sin d = 0=\sin a+\sin b+\sin c+\sin d\ =

(using c + d = ( a + b ) c+d=-(a+b) )

= 2 sin ( a + b 2 ) ( cos ( a b 2 ) cos ( c d 2 ) ) = =2\sin (\frac {a+b}{2})(\cos (\frac {a-b}{2})-\cos (\frac {c-d}{2})) =

(using c d = ( a + c ) + ( b + c ) c-d=(a+c) + (b+c) and a b = ( a + c ) ( b + c ) a-b=(a+c) - (b+c) )

= 4 sin ( a + b 2 ) sin ( a + c 2 ) sin ( b + c 2 ) = 4\sin (\frac {a+b}{2})\sin (\frac {a+c}{2})\sin (\frac {b+c}{2})

which leads to: a = b a=-b or a = c a=-c or b = c b=-c .

Now use the counting already explained by Thomas B.

Sed Holaysan
Aug 23, 2013

Let a cubic equation of the form n 3 + a n 2 + b n + c = 0 n^{3} + an^{2} + bn + c = 0 have roots equivalent to x, y, and z.

By Vieta's theorem, the root-coefficient relationships are written as follows: x+y+z = -a, xy + yz + xz = b, xyz = -c.

The first equation in the problem can be combined with the first root-coefficient relationship to yield a = -20. The second equation in the problem can be expanded and simplified as follows: 2 ( x 2 + y 2 + z 2 ) 2 ( x y + y z + x z ) = x y z 2(x^{2}+y^{2}+z^{2})-2(xy+yz+xz)=xyz 2 ( ( x + y + z ) 2 2 ( x y + y z + x z ) ) 2 ( x y + y z + x z ) = x y z 2((x+y+z)^{2}-2(xy+yz+xz))-2(xy+yz+xz)=xyz 2 ( x + y + z ) 2 6 ( x y + y z + x z ) = x y z 2(x+y+z)^{2}-6(xy+yz+xz)=xyz

The root-coefficient relationships then allow this to be rewritten as: 2 a 2 6 b = c 2a^{2}-6b=-c , or c = 2 ( a 2 3 b ) c=-2(a^{2}-3b)

The final expression, x 3 + y 3 + z 3 x y z \frac{x^{3}+y^{3}+z^{3}}{xyz} , is simplified in this manner: = x 3 + y 3 + z 3 3 x y z + 3 x y z x y z \frac{x^{3}+y^{3}+z^{3}-3xyz+3xyz}{xyz} = ( x + y + z ) ( x 2 + y 2 + z 2 x y y z x z ) + 3 x y z x y z \frac{(x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-xz)+3xyz}{xyz} = ( x + y + z ) ( ( x + y + z ) 2 3 ( x y y z x z ) ) + 3 x y z x y z \frac{(x+y+z)((x+y+z)^{2}-3(xy-yz-xz))+3xyz}{xyz} Writing in terms of a, b, and c: = ( a ) ( a 2 3 b ) 3 c c \frac{(-a)(a^{2}-3b)-3c}{-c} = 3 + ( a ) ( a 2 3 b ) c 3+\frac{(a)(a^{2}-3b)}{c}

From the earlier calculations: c = 2 ( a 2 3 b ) c=-2(a^{2}-3b) , a = -20: = 3 + ( a ) ( a 2 3 b ) 2 ( a 2 3 b 3+\frac{(a)(a^{2}-3b)}{-2(a^{2}-3b} = 3 + a 2 3+\frac{a}{-2} = 3 + 20 2 3+\frac{-20}{-2}

=13

Anh Tuong Nguyen
Aug 22, 2013

We have x 3 + y 3 + z 3 3 x y z = ( x + y ) 3 3 x y ( x + y ) + z 3 3 x y z x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz

= ( x + y + z ) ( ( x + y ) 2 ( x + y ) z + z 2 ) 3 x y ( x + y + z ) = ( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) =(x+y+z)((x+y)^2-(x+y)z+z^2) -3xy(x+y+z)=(x+y+z)(x^2+y^2+z^2-xy-yz-zx) = ( x + y + z ) ( 1 2 ( ( x y ) 2 + ( y z ) 2 + ( z x ) 2 ) ) =(x+y+z)(\frac{1}{2}((x-y)^2+(y-z)^2+(z-x)^2))

Now, by substituting the values given, we have: x 3 + y 3 + z 3 3 x y z = 20 1 2 ( x y z ) x^3+y^3+z^3-3xyz=20\frac{1}{2}(xyz) or x 3 + y 3 + z 3 = 13 x y z x^3+y^3+z^3=13xyz

Hence, 13 is the answer we desired.

Zi Song Yeoh
Aug 21, 2013

Note that ( x + y + z ) [ ( x y ) 2 + ( y z ) 2 + ( z x ) 2 ] = 2 ( x 3 + y 3 + z 3 3 x y z ) (x + y + z)[(x - y)^2 + (y - z)^2 + (z - x)^2] = 2(x^3 + y^3 + z^3 - 3xyz) . So,

26 x y z = 2 ( x 3 + y 3 + z 3 ) 26xyz = 2(x^3 + y^3 + z^3) and thus x 3 + y 3 + z 3 x y z = 13 \frac{x^3 + y^3 + z^3}{xyz} = 13 .

Daniel Cabrales
Aug 20, 2013

We will need 3 equations to solve for the values of all three numbers, since we were given only 2 2 we need to express the desired expression in terms of the variables above.

Expanding the LHS of the second equation will yield,

2 ( x 2 + y 2 + z 2 x y y z x z ) = x y z 2(x^{2} + y^{2} + z^{2} - xy - yz - xz) = xyz

Multiplying the LHS of the first equation to both sides of the second equation will yield:

2 x 3 + 2 y 3 + 2 z 3 6 x y z = x y z ( x + y + z ) 2x^{3} + 2y^{3} + 2z^{3} - 6xyz = xyz (x + y + z)

Now if we solve for x 3 + y 3 + z 3 x^{3} + y^{3} + z^{3} in the new equation, we shall have the numerator of the algebraic expression we are asked to find. So,

x 3 + y 3 + z 3 = ( 1 / 2 ) ( x y z ( x + y + z ) + 6 x y z ) x^{3} + y^{3} + z^{3} = (1/2)(xyz(x + y + z) + 6xyz)

With then if we divide it by x y z xyz we'll arrive at the desired answer. Thus,

x 3 + y 3 + z 3 x y z = ( 1 / 2 ) ( x + y + z + 6 ) \frac{x^{3} + y^{3} + z^{3}}{xyz} = (1/2)(x + y + z + 6)

And substituting 20 20 to x + y + z x + y + z we will get the answer:

x 3 + y 3 + z 3 x y z = ( 1 / 2 ) ( 20 + 6 ) \frac{x^{3} + y^{3} + z^{3}}{xyz} = (1/2)(20 + 6)

x 3 + y 3 + z 3 x y z = ( 1 / 2 ) ( 26 ) \frac{x^{3} + y^{3} + z^{3}}{xyz} = (1/2)(26)

x 3 + y 3 + z 3 x y z = 13 \frac{x^{3} + y^{3} + z^{3}}{xyz} = 13

Kishlaya Jaiswal
Aug 19, 2013

Given : ( x y ) 2 + ( y z ) 2 + ( z x ) 2 = x y z (x-y)^2+(y-z)^2+(z-x)^2=xyz

On multiplying by two on both sides, we get - 1 2 ( x y ) 2 + ( y z ) 2 + ( z x ) 2 = 1 2 x y z \frac{1}{2}{(x-y)^2+(y-z)^2+(z-x)^2}=\frac{1}{2}xyz x 2 + y 2 + z 2 x y y z z x = 1 2 x y z \Rightarrow x^2 +y^2 +z^2 -xy -yz -zx = \frac{1}{2}xyz

Now we multiply by x + y + z x+y+z on both sides, we get - ( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) = 1 2 ( x y z ) ( x + y + z ) (x+y+z)(x^2 +y^2 +z^2 -xy -yz -zx) = \frac{1}{2}(xyz)(x+y+z) x 3 + y 3 + z 3 3 x y z = 1 2 ( x y z ) ( x + y + z ) \Rightarrow x^3 + y^3 + z^3 - 3xyz = \frac{1}{2}(xyz)(x+y+z)

But x + y + z = 20 x+y+z = 20 , so x 3 + y 3 + z 3 3 x y z = 1 2 ( x y z ) . 20 = 10 x y z \Rightarrow x^3 + y^3 + z^3 - 3xyz = \frac{1}{2}(xyz).20 = 10xyz x 3 + y 3 + z 3 = 13 x y z \Rightarrow x^3 + y^3 + z^3 = 13xyz x 3 + y 3 + z 3 x y z = 13 \frac{x^3 + y^3 + z^3}{xyz} = 13

( x + y + z ) 2 = 400 (x+y+z)^2=400

x 2 + y 2 + z 2 = 400 ( 2 x y + 2 x z + 2 y z ) x^2+y^2+z^2=400-(2xy+2xz+2yz) .....(1)

( x y ) 2 + ( y z ) 2 + ( z x ) 2 = x y z (x-y)^2+(y-z)^2+(z-x)^2=xyz

2 x 2 + 2 y 2 + 2 z 2 2 x y 2 x z 2 y z = x y z 2x^2+2y^2+2z^2-2xy-2xz-2yz=xyz .....(2)

substitute (1) to (2)

800 6 ( x y + x z + y z ) = x y z 800-6(xy+xz+yz)=xyz

x y + x z + y z = 800 x y z 6 xy+xz+yz=\frac{800-xyz}{6}

x 3 + y 3 + z 3 = ( x + y + z ) 3 3 ( x + y + z ) ( x y + x z + y z ) + 3 x y z x^3+y^3+z^3=(x+y+z)^3-3(x+y+z)(xy+xz+yz)+3xyz

x 3 + y 3 + z 3 = 8000 60 ( 800 x y z 6 ) + 3 x y z x^3+y^3+z^3=8000-60(\frac{800-xyz}{6})+3xyz

x 3 + y 3 + z 3 = 13 x y z x^3+y^3+z^3=13xyz

so the answer is 13 \boxed{13} .

multiply both equations

(x+y+z)[(x−y)^2+(y−z)^2+(z−x)^2]=20xyz.

=>(x+y+z)(x2+y2+z2−xy−yz−zx)=10xyz.

x^3+y^3+z^3−3xyz=10xyz

x^3+y^3+z^3=13xyz

(x^3+y^3+z^3)/xyz=13

Vikash Kumar - 7 years, 9 months ago

From ( x y ) 2 + ( y z ) 2 + ( z x ) 2 = x y z (x-y)^2+(y-z)^2+(z-x)^2=xyz , we have 2 ( x 2 + y 2 + z 2 x y y z z x ) = x y z 2(x^2+y^2+z^2-xy-yz-zx)=xyz

We have: x 3 + y 3 + z 3 x y z 3 = x 3 + y 3 + z 3 3 x y z x y z \frac{x^3+y^3+z^3}{xyz}-3=\frac{x^3+y^3+z^3-3xyz}{xyz}

= ( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) x y z = 20. 1 2 = 10 =\frac{(x+y+z)(x^2+y^2+z^2-xy-yz-zx)}{xyz}=20.\frac{1}{2}=10

Therefore, x 3 + y 3 + z 3 x y z = 13 \frac{x^3+y^3+z^3}{xyz}=13

Lim Jian Liang
Feb 5, 2017

Expand the second equation you will get x 2 + y 2 + z 2 x y y z x z = x y z / 2 x^2+y^2+z^2-xy-yz-xz= xyz/2

Then multiplies both sides by 20, you will get ( x + y + z ) ( x 2 + y 2 + z 2 x y y z x z ) = 10 x y z (x+y+z)(x^2+y^2+z^2-xy-yz-xz)= 10xyz

By solving this equation, you will get x 3 + y 3 + z 3 3 x y z = 10 x y z x^3+y^3+z^3-3xyz= 10xyz

Therefore, ( x 3 + y 3 + z 3 ) / x y z = 13 (x^3+y^3+z^3)/xyz= 13

Note: The reason for stating that they are complex numbers, is to ensure that the system of equations has a solution. Otherwise, we cannot conclude what the non-existant value is.

IE If you are told " x x is a real number such that x 2 = 1 x^2 = - 1 , find x 4 x^4 ", then the answer isn't x 4 = ( x 2 ) 2 = 1 x^4 = (x^2)^2 = 1 , but instead it should be "no solution".

Calvin Lin Staff - 4 years, 4 months ago
Dinamani Borah
Jan 2, 2017

By using the second given condition We get x^2 + y^2 + z^2 - xy - yz -xz = xyz/2 Now using identity x^3 + y^3 + z^3 - 3xyz = (x+y+z)(x^2 + y^2 + z^2 - xy - yz -xz) We get x^3 + y^3 + z^3 = 13xyz Hence answer is 13.

Mayank Holmes
Jan 16, 2016

we know that x^3 + y^3 + z^3 = ( x^2 + y^2 + z^2 - xy - yz - zx ) * ( x+y+z) ...... (1) (x-y)^2 + (y-z)^2 + (z-x)^2 = 2 ( x^2 + y^2 + z^2 - xy - yz - zx ) = xyz ..........(2) PUT x+y+z=20 in eqn (1) ........... x^3 + y^3 + z^3 = 20 * ( xyz / 2 )

Pranay Kumar
Aug 25, 2015

Use => a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc). and replace ∑(x-y)^2 with => 2(x^2+y^2+z^2 - xy-yz-zx) .. :) Found it easier than usual level 4 questions..

Moderator note:

How are you applying the first line of your solutions with the second line of your solution?

Unfortunately, not all of us are mind readers, and can only deduce from what you have written down.

Elijah Tan
Aug 22, 2013

Multiply both equations together: (x+y+z) [x^2 - 2xy + y^2 + y^2 - 2zy + z^2 + z^2 - 2xz + x^2] = 20xyz (x+y+z)(x^2+y^2+z^2 - xy - yz - xz) = 10xyz x^3 + y^3 + z^3 − 3xyz = 10xyz x^3 + y^3 + z^3 = 13xyz (x^3 + y^3 + z^3) / xyz = 13

Jubayer Nirjhor
Aug 21, 2013

Very easy problem for 180 points...

First, let's show some identities...

1 2 ( x y ) 2 + ( y z ) 2 + ( z x ) 2 = x 2 + y 2 + z 2 x y y z z x \frac {1}{2} (x-y)^2 + (y-z)^2 +(z-x)^2 = x^2+y^2+z^2-xy-yz-zx

( x y ) 2 + ( y z ) 2 + ( z x ) 2 = 2 ( x 2 + y 2 + z 2 x y y z z x ) \Longrightarrow (x-y)^2 + (y-z)^2 +(z-x)^2 = 2(x^2+y^2+z^2-xy-yz-zx)

And, ( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) = x 3 + y 3 + z 3 3 x y z (x+y+z)(x^2+y^2+z^2-xy-yz-zx)=x^3+y^3+z^3-3xyz

Now, let's multiply the two equations in the question...

( x + y + z ) ( x y ) 2 + ( y z ) 2 + ( z x ) 2 = 20 x y z (x+y+z){(x-y)^2+(y-z)^2+(z-x)^2} = 20xyz

( x + y + z ) × 2 ( x 2 + y 2 + z 2 x y y z z x ) = 20 x y z \Longrightarrow (x+y+z) \times 2(x^2+y^2+z^2-xy-yz-zx) = 20xyz

( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) = 10 x y z \Longrightarrow (x+y+z)(x^2+y^2+z^2-xy-yz-zx)=10xyz

x 3 + y 3 + z 3 3 x y z = 10 x y z \Longrightarrow x^3+y^3+z^3 -3xyz =10xyz

x 3 + y 3 + z 3 = 13 x y z \Longrightarrow x^3+y^3+z^3=13xyz

x 3 + y 3 + z 3 x y z = 13 \Longrightarrow \frac {x^3+y^3+z^3}{xyz} =13

Hence, the required answer is 13 \fbox {13}

"very easy" depends on what identities you had memorized I guess; I didn't know the (x+y+z) (xx+yy+zz-xy-yz-zx) one , so it took a lot of things tried before I foind a line of enquiry that worked.

Matt McNabb - 7 years, 9 months ago

Log in to reply

These identities are very well-known... That's why I didn't find it important to prove these... Anyway, accidentally if someone didn't face them, I'm illustrating the identities for them in comment! :)

Jubayer Nirjhor - 7 years, 9 months ago

1st one:

( x y ) 2 + ( y z ) 2 + ( z x ) 2 (x-y)^2+(y-z)^2+(z-x)^2

= ( x 2 2 x y + y 2 ) + ( y 2 2 y z + z 2 ) + ( z 2 2 z x + x 2 ) =(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)

= 2 x 2 + 2 y 2 + 2 z 2 2 x y 2 y z 2 z x =2x^2+2y^2+2z^2-2xy-2yz-2zx

= 2 ( x 2 + y 2 + z 2 x y y z z x ) =2(x^2+y^2+z^2-xy-yz-zx)

2nd one:

x 3 + y 3 + z 3 3 x y z x^3+y^3+z^3-3xyz

= ( x + y ) 3 3 x y ( x + y ) + z 3 3 x y z =(x+y)^3-3xy(x+y)+z^3-3xyz

= ( x + y ) 3 + z 3 3 x y ( x + y + z ) =(x+y)^3+z^3-3xy(x+y+z)

= ( x + y + z ) ( ( x + y ) 2 ( x + y ) z + z 2 ) 3 x y ( x + y + z ) =(x+y+z)((x+y)^2-(x+y)z+z^2)-3xy(x+y+z)

= ( x + y + z ) ( x 2 + 2 x y + y 2 y z z x + z 2 ) 3 x y ( x + y + z ) =(x+y+z)(x^2+2xy+y^2-yz-zx+z^2)-3xy(x+y+z)

= ( x + y + z ) ( x 2 + y 2 + z 2 + 2 x y y z z x 3 x y ) =(x+y+z)(x^2+y^2+z^2+2xy-yz-zx-3xy)

= ( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) =(x+y+z)(x^2+y^2+z^2-xy-yz-zx)

Jubayer Nirjhor - 7 years, 9 months ago

You missed a bracket in the first identity. It should be like this:

1 2 ( ( x y ) 2 + ( y z ) 2 + ( z x ) 2 ) = x 2 + y 2 + z 2 x y y z z x \frac{1}{2} ( (x-y)^2+(y-z)^2+(z-x)^2 )=x^2+y^2+z^2-xy-yz-zx

Mursalin Habib - 7 years, 9 months ago

Log in to reply

Noooooooo, not again!!! :-( I missed bracket in two places!!! Second one where I multiplied two equations!!! >:o That should look like this...

( x + y + z ) ( ( x y ) 2 + ( y z ) 2 + ( z x ) 2 ) = 20 x y z (x+y+z)((x-y)^2+(y-z)^2+(z-x)^2)=20xyz

Jubayer Nirjhor - 7 years, 9 months ago

Log in to reply

Don't worry! Most people don't care about silly typos like these. But it could be confusing for people who don't know how to solve the problem and are trying learn from your solution. That's why I pointed it out.

It is always good to read your whole solution before posting it as it avoids typos like these.

Mursalin Habib - 7 years, 9 months ago

Log in to reply

@Mursalin Habib Thanks! :)

Jubayer Nirjhor - 7 years, 9 months ago
Abhijeeth Babu
Aug 21, 2013

Since x^3+y^3+z^3 - 3xyz = (x+y+z)1/2( (x-y)^2 + (y-z)^2 + (z-x)^2 ) = 20/2 (xyz)= 10xyz so x^3+y^3+z^3 = 13xyz and finally x^3+y^3+z^3/xyz = 13

Bhargav Das
Aug 21, 2013

1/2{(x−y)^2+(y−z)^2+(z−x)^2}=1/2xyz. (x^3+y^3+z^3)/xyz = [1/2xyz(x+y+z)+3xyz]/xyz =13

Danny He
Aug 21, 2013

Note that x 3 + y 3 + z 3 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 x y z y z x ) x^3 + y^3 + z^3 - 3xyz = \left(x+y+z\right)\left(x^2+y^2+z^2-xy-zy-zx\right)

From equation ( 2 2 ), we have that x y z = 2 ( x 2 + y 2 + z 2 x y z y z x ) xyz = 2\left(x^2+y^2+z^2-xy-zy-zx\right)

So x 3 + y 3 + z 3 = x y z ( x + y + z ) 2 3 x y z x^3+y^3+z^3 = \frac{xyz\left(x+y+z\right)}{2} -3xyz

From equation ( 1 1 ) we have that x + y + z = 20 x+y+z = 20

So x 3 + y 3 + z 3 = 10 x y z + 3 x y z x^3 + y^3 + z^3 = 10xyz+3xyz

Therefore x 3 + y 3 + z 3 x y z = 13 x y z x y z = 13 \frac{x^3+y^3+z^3}{xyz} = \frac{13xyz}{xyz} = 13

Thus the required answer is 13 13

Leonardo Chandra
Aug 21, 2013

Multiply both equations to get: ( x + y + z ) ( ( x y ) 2 + ( y z ) 2 + ( z x ) 2 ) (x+y+z)*((x-y)^2+(y-z)^2+(z-x)^2) = 20 x y z 20xyz ( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) (x+y+z)*(x^2+y^2+z^2-xy-yz-zx) = 10 x y z 10xyz x 3 + y 3 + z 3 3 x y z x^3+y^3+z^3-3xyz = 10 x y z 10xyz x 3 + y 3 + z 3 x^3+y^3+z^3 = 13 x y z 13xyz ( x 3 + y 3 + z 3 ) : ( x y z ) (x^3+y^3+z^3):(xyz) = 13 13

Daniel Chiu
Aug 20, 2013

Expanding: 2 x 2 + 2 y 2 + 2 z 2 2 x y 2 x z 2 y z = x y z 2x^2+2y^2+2z^2-2xy-2xz-2yz=xyz Recall the useful identity: x 3 + y 3 + z 3 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 x y x z y z ) x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2--xy-xz-yz) Now, we can find x 3 + y 3 + z 3 x^3+y^3+z^3 : x 3 + y 3 + z 3 = 20 ( x y z 2 ) + 3 x y z = 10 x y z + 3 x y z = 13 x y z x^3+y^3+z^3=20\left(\dfrac{xyz}{2}\right)+3xyz=10xyz+3xyz=13xyz The answer is 13 \boxed{13} .

Tyler Russell
Aug 20, 2013

First, note that x 3 + y 3 + z 3 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 x y x z y z ) x^3 + y^3 +z^3 -3xyz = (x+y+z)(x^2+y^2+z^2-xy-xz-yz) and that ( x y ) 2 + ( x z ) 2 + ( y z ) 2 = 2 ( x 2 + y 2 + z 2 x y x z y z ) (x-y)^2 +(x-z)^2 + (y-z)^2 = 2(x^2+y^2+z^2-xy-xz-yz) .

Then it follows that

x 3 + y 3 + z 3 x y z = x 3 + y 3 + z 3 3 x y z + 3 x y z x y z = ( x + y + z ) ( x 2 + y 2 + z 2 x y x z y z ) 2 ( x 2 + y 2 + z 2 x y x z y z ) + 3 = 20 2 + 3 = 13. \frac{x^3+y^3+z^3}{xyz} = \frac{x^3+y^3+z^3-3xyz +3xyz}{xyz} =\\ \frac{(x+y+z)(x^2+y^2+z^2-xy-xz-yz)}{2(x^2+y^2+z^2-xy-xz-yz)} +3 = \frac{20}{2}+3 = 13.

Andrew L
Aug 19, 2013

Expanding x y z xyz , we get

x y z = 2 x 2 + 2 y 2 + 2 z 2 2 x y 2 x z 2 y z xyz = 2x^{2} + 2y^{2} + 2z^{2} -2xy - 2xz - 2yz (1)

Then,

x 2 y z = 2 x 3 + 2 x y 2 + 2 x z 2 2 x 2 y 2 x 2 z 2 x y z x^{2}yz = 2x^{3} + 2xy^{2} + 2xz^{2} - 2x^{2}y - 2x^{2}z - 2xyz (2) x y 2 z = 2 x 2 y + 2 y 3 + 2 y z 2 2 x y 2 2 x y z 2 y 2 z xy^{2}z = 2x^{2}y + 2y^{3} + 2yz^{2} - 2xy^{2} - 2xyz - 2y^{2}z (3) x y z 2 = 2 x 2 z + 2 y 2 z + 2 z 3 2 x y z 2 x z 2 2 y z 2 xyz^{2} = 2x^{2}z + 2y^{2}z + 2z^{3} - 2xyz - 2xz^{2} - 2yz^{2} (4)

Now, notice that if we add equations (2), (3), and (4) together, we get

x × x y z + y × x y z + z × x y z x \times xyz + y \times xyz + z \times xyz

= ( x + y + z ) ( x y z ) = (x + y + z)(xyz)

= 20 x y z = 20xyz (according to the first equation we are given)

on the left hand side. Now, after adding the right hand side of equations (2), (3), and (4) together and cancelling like terms, we get

20 x y z = 2 x 3 + 2 y 3 + 2 z 3 6 x y z 20xyz = 2x^{3} + 2y^{3} + 2z^{3} - 6xyz

26 x y z = 2 x 3 + 2 y 3 + 2 z 3 26xyz = 2x^{3} + 2y^{3} + 2z^{3}

13 x y z = x 3 + y 3 + z 3 13xyz = x^{3} + y^{3} + z^{3}

13 = x 3 + y 3 + z 3 x y z 13 = \frac{x^{3} + y^{3} + z^{3}}{xyz}

Jeffrey Robles
Aug 19, 2013

x + y + z x y z = ( x y ) 2 + ( y z ) 2 + ( z x ) 2 = ( x y + y z + z x ) 2 2 ( ( x y ) ( y z ) + ( x y ) ( y z ) + ( y z ) ( z x ) ) x y z = 2 ( x z + y z + x y x 2 y 2 z 2 ) [ 1 ] ( x + y + z ) 3 = ( x + y + z ) ( x + y + z ) 2 x 3 + y 3 + z 3 + 3 ( x y ( x + y ) + x z ( x + z ) + y z ( y + z ) ) + 6 x y z = 20 ( x 2 + y 2 + z 2 + 2 x y + 2 x z + 2 y z ) x+y+z \\ xyz=(x-y)^2+(y-z)^2+(z-x)^2=(x-y+y-z+z-x)^2-2((x-y)(y-z)+(x-y)(y-z)+(y-z)(z-x)) \\ xyz=-2(xz+yz+xy-x^2-y^2-z^2) \quad [1] \\ \\ \\ (x+y+z)^3=(x+y+z)(x+y+z)^2 \\ x^3+y^3+z^3+3(xy(x+y)+xz(x+z)+yz(y+z))+6xyz=20(x^2+y^2+z^2+2xy+2xz+2yz)

Apply [ 1 ] [1] to the right-hand side of the equation and the equation x + y + z = 20 x+y+z=20 to the left.

x 3 + y 3 + z 3 + 3 ( x y ( 20 z ) + x z ( 20 y ) + y z ( 20 x ) ) + 6 x y z = 20 ( x z + x y + y z + 2 x y + 2 x z + 2 y z ) + 10 x y z x 3 + y 3 + z 3 + 3 ( 20 x y + 20 x z + 20 y z 3 x y z ) + 6 x y z = 60 ( x z + x y + y z ) + 10 x y z x 3 + y 3 + z 3 = 13 x y z x^3+y^3+z^3+3(xy(20-z)+xz(20-y)+yz(20-x))+6xyz=20(xz+xy+yz+2xy+2xz+2yz)+10xyz \\ x^3+y^3+z^3+3(20xy+20xz+20yz-3xyz)+6xyz=60(xz+xy+yz)+10xyz \\ x^3+y^3+z^3=13xyz

Therefore,

( x 3 + y 3 + z 3 ) / ( x y z ) = 13 (x^3+y^3+z^3)/(xyz) = 13

Jian Feng Gao
Aug 18, 2013

Expanding (x-y)^2 + (y-z)^2 + (z-x)^2 = xyz gives

2(x^2-xy-xz+y^2-yz+z^2)=xyz

Then multiplying the left side by (x+y+z) and the right by 20 since x+y+z=20 gives

2x^3+2y^3+2z^3-6xyz=20xyz

2(x^3+y^3+z^3)=26xyz

Therefore,

x^3+y^3+z^3/xyz = 13

Shashank Goel
Aug 18, 2013

(x^+y^3+z^3-3xyz)/xyz +3=(x+y+z)((x−y)^2+(y−z)^2+(z−x)^2)*1/2xyz +3=20xyz/2xyz +3=13

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...