Composites Done, Now What?

Calculus Level 3

lim x 0 tan x x x 2 tan x \large\lim_{x\to 0}\dfrac{\tan x - x}{x^2\tan x}

The limit above has a closed form. Find the value of this closed form.

Give your answer to 3 decimal places.


The answer is 0.333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 28, 2016

Relevant wiki: Maclaurin Series

L = lim x 0 tan x x x 2 tan x Using Maclaurin series = lim x 0 x + 1 3 x 3 + 2 15 x 5 + 17 315 x 7 + x x 2 ( x + 1 3 x 3 + 2 15 x 5 + 17 315 x 7 + ) = lim x 0 1 3 x 3 + 2 15 x 5 + 17 315 x 7 + x 3 + 1 3 x 5 + 2 15 x 7 + 17 315 x 9 + Dividing up and down by x 3 = lim x 0 1 3 + 2 15 x 2 + 17 315 x 5 + 1 + 1 3 x 2 + 2 15 x 4 + 17 315 x 6 + = 1 3 0.333 \begin{aligned} \mathfrak L & = \lim_{x \to 0} \frac{\color{#3D99F6}{\tan x} - x}{x^2\color{#3D99F6}{\tan x}} \quad \quad \small \color{#3D99F6}{\text{Using Maclaurin series}} \\ & = \lim_{x \to 0} \frac{\color{#3D99F6}{x+\frac{1}{3}x^3 +\frac{2}{15}x^5 + \frac{17}{315}x^7+ \cdots} - x}{x^2 \left( \color{#3D99F6}{x+\frac{1}{3}x^3 +\frac{2}{15}x^5 + \frac{17}{315}x^7+ \cdots}\right)} \\ & = \lim_{x \to 0} \frac{\frac{1}{3}x^3 +\frac{2}{15}x^5 + \frac{17}{315}x^7+ \cdots}{x^3+\frac{1}{3}x^5 +\frac{2}{15}x^7 + \frac{17}{315}x^9+ \cdots} \quad \quad \small \color{#3D99F6}{\text{Dividing up and down by }x^3} \\ & = \lim_{x \to 0} \frac{\frac{1}{3} +\frac{2}{15}x^2 + \frac{17}{315}x^5+ \cdots}{1+\frac{1}{3}x^2 +\frac{2}{15}x^4 + \frac{17}{315}x^6+ \cdots} \\\ & = \frac{1}{3} \approx \boxed{0.333} \end{aligned}

Series expansion makes life really easy.

Anurag Pandey - 5 years ago

Log in to reply

Yes, if you use l'Hôpital's rule, it will be very long.

Chew-Seong Cheong - 5 years ago

Log in to reply

No. It's not. After L'hopital rule, multiply top and bottom by cos 2 x \cos^2 x . Let L L be this limit, find 1 / L 1/L instead.

Pi Han Goh - 5 years ago

Log in to reply

@Pi Han Goh I see. Thanks

Chew-Seong Cheong - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...