The condominium of numbers!

2 3 4 5 6 7 8 9 \huge\color{#624F41}2^{\color{#D61F06}3^{\color{#EC7300}4^{\color{#20A900}5^{\color{teal}6^{\color{magenta}7^{\color{#302B94}8^{\color{#3D99F6}9}}}}}}}

Find the last three digits of the number above.


The answer is 352.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Akshat Sharda
Mar 28, 2016

Let, x = 2 3 4 5 6 7 8 9 x=2^{3^{4^{5^{6^{7^{8^{9}}}}}}} and then we have to find x ( m o d 1000 ) x \pmod {1000} .

As 1000 = 8 × 125 1000=8×125 , we can use Chinese Remainder Theorem as follows,

Finding x ( m o d 8 ) x \pmod 8 ,

x = 2 3 4 5 6 7 8 9 0 ( m o d 8 ) \boxed{x= 2^{3^{4^{5^{6^{7^{8^{9}}}}}}} \equiv 0 \pmod 8}

Finding x ( m o d 125 ) x \pmod{125} ,

2 3 4 5 6 7 8 9 ( m o d 125 ) 3 4 5 6 7 8 9 ( m o d ϕ ( 125 ) = 100 ) 4 5 6 7 8 9 ( m o d λ ( 100 ) = 20 ) \begin{aligned} 2^{3^{4^{5^{6^{7^{8^{9}}}}}}} & \pmod {125} \\ \Rightarrow 3^{4^{5^{6^{7^{8^{9}}}}}} & \pmod {\phi(125)=100} \\ \Rightarrow 4^{5^{6^{7^{8^{9}}}}} & \pmod{\lambda(100)=20} \end{aligned}

Now observing that,

4 k ( m o d 20 ) , k N { 4 odd 4 ( m o d 20 ) 4 even 16 ( m o d 20 ) 4^k \pmod {20} , \forall k\in \mathbb{N} \\ \begin{cases} 4^{\text{odd}} \equiv 4 \pmod{20} \\ 4^{\text{even}} \equiv 16 \pmod{20}\end{cases}

Therefore,

4 5 6 7 8 9 4 ( m o d λ ( 100 ) = 20 ) 3 4 81 ( m o d ϕ ( 125 ) = 100 ) 2 81 ( 2 7 ) 11 2 4 ( m o d 125 ) 3 11 16 ( 3 5 ) 2 3 16 ( m o d 125 ) 7 2 3 16 102 ( m o d 125 ) \begin{aligned} 4^{5^{6^{7^{8^{9}}}}} & \equiv 4 \pmod{\lambda(100)=20} \\ \Rightarrow 3^{4} & \equiv 81 \pmod{\phi(125)=100} \\ \Rightarrow 2^{81} & \equiv (2^7)^{11} \cdot 2^4 \pmod {125} \\ 3^{11}\cdot 16 & \equiv (3^5)^2 \cdot 3\cdot 16 \pmod{125} \\ 7^2\cdot 3 \cdot 16 & \equiv 102 \pmod{125} \end{aligned}

Therefore,

x 102 ( m o d 125 ) \boxed{x\equiv 102 \pmod{125}}

Now applying Chinese Remainder Theorem on the expressions in the boxes,

x 352 ( m o d 1000 ) x\equiv \boxed{ \boxed{ 352}} \pmod{1000}

Moderator note:

Good approach applying the Chinese Remainder Theorem and Euler's Theorem.

Otto Bretscher
Mar 29, 2016

We are given n = 2 3 4 a n=2^{3^{4^a}} where a a is odd. If we work modulo 125 in the base and modulo λ ( λ ( 125 ) ) \lambda(\lambda(125)) = λ ( 100 ) =\lambda(100) = 20 =20 in the second exponent, 4 a 4^a , we observe that 4 a 4 ( m o d 20 ) 4^a\equiv 4 \pmod{20} for odd a a so that n 2 3 4 n\equiv 2^{3^4} modulo 125 and modulo 1000. Now 2 78 44 ( m o d 125 ) 2^{78}\equiv 44 \pmod{125} so that n 2 3 4 = 2 81 8 × 44 = 352 ( m o d 1000 ) n\equiv 2^{3^4}=2^{81}\equiv 8\times 44=\boxed{352} \pmod{1000}

Alex Spagnoletti
Mar 28, 2016

I think that one of the fastest method to solve the problem is using a mix of eulero φ function and chaermical (or λ) function. So working modulo 1000 the φ is 400 while λ is 200. With some calculus we can obtain first 8 9 8^9 and then all the other powers. At 6 t h 6th power we have 6 801 6^{801} wich is 6 1 6^1 thanks to φ. 5 6 625 ( m o d 1000 ) 5^6 \equiv 625 \pmod {1000} here I used the two functions to reduce 625 to 25. Then 4 25 624 ( m o d 1000 ) 4^{25} \equiv 624 \pmod {1000} (also here from 624 to 24). 3 24 481 ( m o d 1000 ) 3^{24} \equiv 481 \pmod{1000} and the last calculus is 2 81 2^{81} wich is 352 ( m o d 1000 ) 352 \pmod {1000} . So the solution is 352 \boxed{352}

Actually the Carmichael Lambda of 1000 is 100

Otto Bretscher - 5 years, 2 months ago

Log in to reply

Isn't it half of phi function?

Alex Spagnoletti - 5 years, 2 months ago

Log in to reply

No .

Pi Han Goh - 5 years, 2 months ago

Log in to reply

@Pi Han Goh Oh, I've read better the wiki...I thought that it was 1/2 of phi always while it is just for the single prime factors. Thanks @Pi Han Goh

Alex Spagnoletti - 5 years, 2 months ago

Log in to reply

@Alex Spagnoletti Hahah no problem! Anytime!! =D

Pi Han Goh - 5 years, 2 months ago
Lu Chee Ket
Apr 5, 2016

To be certain, I applied computing method to take least significant figures.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...