Convergent or divergent? That is the question

Calculus Level 5

S = n = 0 n 4 2 n \displaystyle S = \sum_{n=0}^{\infty} \dfrac{n^4}{2^n}

If the number of positive factors of S S is equal to A A , find S A S - A .


The answer is 138.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Proving the convergence of the series.

T n + 1 = ( n + 1 ) 4 2 n + 1 T_{n+1} = \dfrac{(n+1)^4}{2^{n+1}}

T n = ( n ) 4 2 n T_{n} = \dfrac{(n)^4}{2^{n}}

lim n T n + 1 T n = lim n ( n + 1 ) 4 × 2 n n 4 × 2 n + 1 = 1 2 \displaystyle \lim_{n \rightarrow \infty} \dfrac{T_{n+1}}{T_{n}} = \lim_{n \rightarrow \infty} \dfrac{(n+1)^4 \times 2^n}{n^4 \times 2^{n+1}} = \dfrac{1}{2}

Thus, by the ratio test, the series converges, and any rearrangement of terms is justified.

S = 1 2 + 16 4 + 81 8 + 256 16 + 625 32 . . . . \dfrac{1}{2} + \dfrac{16}{4} + \dfrac{81}{8} + \dfrac{256}{16} + \dfrac{625}{32} .... \infty ..(i)

S 2 = 1 4 + 16 8 + 81 16 + 256 32 . . . . \dfrac{S}{2} = \dfrac{1}{4} + \dfrac{16}{8} + \dfrac{81}{16} + \dfrac{256}{32} .... \infty ..(ii)

Subtracting (ii) from (i),

S 2 = 1 2 + 15 4 + 65 8 + 175 16 + 369 32 . . . . \dfrac{S}{2} = \dfrac{1}{2} + \dfrac{15}{4} + \dfrac{65}{8} + \dfrac{175}{16} + \dfrac{369}{32} .... \infty ..(iii)

S 4 = 1 4 + 15 8 + 65 16 + 175 32 + . . . . \dfrac{S}{4} = \dfrac{1}{4} + \dfrac{15}{8} + \dfrac{65}{16} + \dfrac{175}{32} + .... \infty ..(iv)

Subtracting (iv) from (iii),

S 4 = 1 2 + 14 4 + 50 8 + 110 16 + 194 32 . . . . \dfrac{S}{4} = \dfrac{1}{2} + \dfrac{14}{4} + \dfrac{50}{8} + \dfrac{110}{16} + \dfrac{194}{32} .... \infty ..(v)

S 8 = 1 4 + 14 8 + 50 16 + 110 32 + . . . . \dfrac{S}{8} = \dfrac{1}{4} + \dfrac{14}{8} + \dfrac{50}{16} + \dfrac{110}{32} + .... \infty ..(vi)

Subtracting (vi) from (v),

S 8 = 1 2 + 13 4 + 36 8 + 60 16 + 84 32 . . . . \dfrac{S}{8} = \dfrac{1}{2} + \dfrac{13}{4} + \dfrac{36}{8} + \dfrac{60}{16} + \dfrac{84}{32} .... \infty ..(vii)

S 16 = 1 4 + 13 8 + 36 16 + 60 32 . . . . \dfrac{S}{16} = \dfrac{1}{4} + \dfrac{13}{8} + \dfrac{36}{16} + \dfrac{60}{32} .... \infty ..(viii)

Subtracting (viii) from (vii)

S 16 = 1 2 + 12 4 + 23 8 + 24 16 + 24 32 . . . . \dfrac{S}{16} = \dfrac{1}{2} + \dfrac{12}{4} + \dfrac{23}{8} + \dfrac{24}{16} + \dfrac{24}{32} .... \infty

The later terms form an infinite G.P with first term a = 24 16 \dfrac{24}{16} and common ratio r = 1 2 \dfrac{1}{2}

S 16 = 1 2 + 12 4 + 23 8 + 24 16 × 1 1 1 2 = 1 2 + 12 4 + 23 8 + 24 8 \therefore \dfrac{S}{16} = \dfrac{1}{2} + \dfrac{12}{4} + \dfrac{23}{8} + \dfrac{24}{16} \times \dfrac{1}{1-\dfrac{1}{2}} = \dfrac{1}{2} + \dfrac{12}{4} + \dfrac{23}{8} + \dfrac{24}{8}

S 16 = 75 8 \therefore \dfrac{S}{16} = \dfrac{75}{8}

S = 150 \therefore S = 150

S = 150 = 5 2 × 2 × 3 S = 150 = 5^2 \times 2 \times 3

Number of positive factors of S ( A ) = ( 2 + 1 ) × ( 1 + 1 ) × ( 1 + 1 ) = 12 (2+1) \times (1+1) \times (1+1) = 12

S A = 150 12 = 138 \therefore S - A = 150 - 12 = 138

Nice problem and solution. I used calculus to solve this, but your solution method is very clever. :)

You might want to specify that A A is the number of positive factors of S . S. I counted the additional 12 12 negative factors of 150 150 as well in my first attempt of 126 , 126, before determining that you were just counting the 12 12 positive factors and subsequently entering the correct answer of 138 138 on my second attempt.

Brian Charlesworth - 5 years, 5 months ago

Log in to reply

Ah, I will edit it right out. Thank you for notifying me. Can you tell me how you solved this using calculus, sir? :)

A Former Brilliant Member - 5 years, 5 months ago

Log in to reply

We can start with the equation for the sum of an infinite GP, namely

n = 0 x n = 1 1 x \displaystyle\sum_{n=0}^{\infty} x^{n} = \dfrac{1}{1 - x} for x < 1. |x| \lt 1.

Differentiating both sides of this equation, (the LHS term by term), we end up with

n = 1 n x n 1 = 1 ( 1 x ) 2 n = 1 n x n = x ( 1 x ) 2 . \displaystyle\sum_{n=1}^{\infty} nx^{n-1} = \dfrac{1}{(1 - x)^{2}} \Longrightarrow \sum_{n=1}^{\infty} nx^{n} = \dfrac{x}{(1 - x)^{2}}.

Differentiating both sides again and simplifying, we find that

n = 1 n 2 x n = x + x 2 ( 1 x ) 3 . \displaystyle\sum_{n=1}^{\infty} n^{2}x^{n} = \dfrac{x + x^{2}}{(1 - x)^{3}}.

Differentiating in the same manner twice more in succession yields that

n = 1 n 3 x n = x 3 + 4 x 2 + x ( 1 x ) 4 \displaystyle\sum_{n=1}^{\infty} n^{3}x^{n} = \dfrac{x^{3} + 4x^{2} + x}{(1 - x)^{4}} and n = 1 n 4 x n = x 4 + 11 x 3 + 11 x 2 + x ( 1 x ) 5 . \displaystyle\sum_{n=1}^{\infty} n^{4}x^{n} = \dfrac{x^{4} + 11x^{3} + 11x^{2} + x}{(1 - x)^{5}}.

Then S S is just this last equation with x = 1 2 , x = \dfrac{1}{2}, giving us the value S = 150 S = 150 as before.

Brian Charlesworth - 5 years, 5 months ago

Log in to reply

@Brian Charlesworth Nicely done!

A Former Brilliant Member - 5 years, 5 months ago

@Brian Charlesworth This is great too!!

rajdeep brahma - 3 years ago

See the solutions here .

Pi Han Goh - 5 years, 5 months ago

Log in to reply

@Pi Han Goh nicely done !

rajdeep brahma - 3 years ago

@Pi Han Goh Ah, the differentiating approach. I get it. It's a lot simpler than my method, for larger exponents.

A Former Brilliant Member - 5 years, 5 months ago

great!+1!!!!

rajdeep brahma - 3 years ago
John Ross
Jun 14, 2018

Notice that the first term of S = n = 0 n k 2 n \displaystyle S = \sum_{n=0}^{\infty} \dfrac{n^k}{2^n} is equal to 0, so the sum would be the same if we started with the second term. Thus we can see that n = 0 n k 2 n = n = 0 ( n + 1 ) k 2 n + 1 2 n = 0 n k 2 n = n = 0 ( n + 1 ) k 2 n n = 0 n k 2 n = n = 0 ( n + 1 ) k n k 2 n \displaystyle \sum_{n=0}^{\infty} \dfrac{n^k}{2^n} = \sum_{n=0}^{\infty} \dfrac{(n+1)^k}{2^{n+1}} \implies 2\sum_{n=0}^{\infty} \dfrac{n^k}{2^n} = \sum_{n=0}^{\infty} \dfrac{(n+1)^k}{2^n} \implies \sum_{n=0}^{\infty} \dfrac{n^k}{2^n} = \sum_{n=0}^{\infty} \dfrac{(n+1)^k-n^k}{2^n} We now have a general rule that rewrites a degree k polynomial in the numerator as a degree k-1 polynomial in the numerator. n = 0 n 4 2 n n = 0 n 4 2 n = n = 0 4 n 3 + 6 n 2 + 4 n + 1 2 n = n = 0 4 n 3 + 6 n 2 + 4 n + 1 2 n n = 0 n 3 2 n = n = 0 3 n 2 + 3 n + 1 2 n = n = 0 18 n 2 + 16 n + 5 2 n n = 0 n 2 2 n = n = 0 2 n + 1 2 n = n = 0 52 n + 23 2 n n = 0 n 2 n = n = 0 1 2 n = n = 0 75 2 n = 150 \begin{aligned} \sum_{n=0}^{\infty} \dfrac{n^4}{2^n} &&&&&&& \sum_{n=0}^{\infty} \dfrac{n^4}{2^n} = \sum_{n=0}^{\infty} \dfrac{4n^3+6n^2+4n+1}{2^n} \\ = \sum_{n=0}^{\infty} \dfrac{4n^3+6n^2+4n+1}{2^n} &&&&&&& \sum_{n=0}^{\infty} \dfrac{n^3}{2^n} = \sum_{n=0}^{\infty} \dfrac{3n^2+3n+1}{2^n} \\ = \sum_{n=0}^{\infty} \dfrac{18n^2+16n+5}{2^n} &&&&&&& \sum_{n=0}^{\infty} \dfrac{n^2}{2^n} = \sum_{n=0}^{\infty} \dfrac{2n+1}{2^n} \\ = \sum_{n=0}^{\infty} \dfrac{52n+23}{2^n} &&&&&&& \sum_{n=0}^{\infty} \dfrac{n}{2^n} = \sum_{n=0}^{\infty} \dfrac{1}{2^n} \\ = \sum_{n=0}^{\infty} \dfrac{75}{2^n} = 150 \end{aligned} 150 has 12 factors, so the answer is 138.

Consider S k = n = 0 n k 2 n S_k = \displaystyle \sum_{n=0}^\infty \frac {n^k}{2^n} . By ratio text S k S_k converges.

S 0 = n = 0 1 2 n = 1 1 1 2 = 2 \begin{aligned} S_0 & = \sum_{n=0}^\infty \frac 1{2^n} = \frac 1{1-\frac 12} = 2 \end{aligned}

S 1 = n = 0 n 2 n = n = 1 n 2 n = n = 0 n + 1 2 n + 1 = 1 2 ( n = 0 n 2 n + n = 0 1 2 n ) = S 1 2 + S 0 2 = S 0 = 2 S 2 = 1 2 ( S 2 + 2 S 1 + S 0 ) = 2 S 1 + S 0 = 4 + 2 = 6 S 3 = 1 2 ( S 3 + 3 S 2 + 3 S 1 + S 0 ) = 3 S 2 + 3 S 1 + S 0 = 18 + 6 + 2 = 26 S 4 = 1 2 ( S 4 + 4 S 3 + 6 S 2 + 4 S 1 + S 0 ) = 4 S 3 + 6 S 2 + 4 S 1 + S 0 = 104 + 36 + 8 + 2 = 150 \begin{aligned} S_1 & = \sum_{\color{#3D99F6}n=0}^\infty \frac n{2^n} = \sum_{\color{#D61F06}n=1}^\infty \frac n{2^n} = \sum_{\color{#3D99F6}n=0}^\infty \frac {n+1}{2^{n+1}} = \frac 12 \left(\sum_{n=0}^\infty \frac n{2^n} + \sum_{n=0}^\infty \frac 1{2^n} \right) = \frac {S_1}2 + \frac {S_0}2 = S_0 = 2 \\ S_2 & = \frac 12 \left(S_2+2S_1+S_0 \right) = 2S_1 + S_0 = 4+2 = 6 \\ S_3 & = \frac 12 \left(S_3+3S_2 + 3S_1 + S_0 \right) = 3 S_2 + 3 S_1 + S_0 = 18+6+2 = 26 \\ S_4 & = \frac 12 \left(S_4+4S_3+6S_2 + 4S_1 + S_0 \right) = 4S_3+6S_2 + 4S_1 + S_0 = 104+36+8+2 = 150 \end{aligned}

S = S 4 = 150 \implies S = S_4 = 150 . Since 150 = 2 × 3 × 5 2 150= 2 \times 3 \times 5^2 , A = ( 1 + 1 ) ( 1 + 1 ) ( 2 + 1 ) = 12 A = (1+1)(1+1)(2+1) = 12 . Therefore, S A = 150 12 = 138 S-A = 150-12 = \boxed{138} .

Ramiel To-ong
Jan 11, 2016

wonderful solution

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...