Converging Sum!

Calculus Level 3

S n = n + 1 2 n + 1 i = 1 n 2 i i S_{n}= \frac{n+1}{2^{n+1}}\sum_{i=1}^{n}\frac{2^{i}}{i}

Consider the sequence, find lim n S n \displaystyle \lim_{n\rightarrow \infty }S_{n} .


The answer is 1.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Let me show you guys something....

Take X = i = 1 n 2 i i S n = n + 1 2 n + 1 X X=\sum _{ i=1 }^{ n }{ \frac { { 2 }^{ i } }{ i } } \Rightarrow { S }_{ n }=\frac { n+1 }{ { 2 }^{ n+1 } } X

Now, S n + 1 = n + 2 2 n + 2 i = 1 n + 1 2 i i \Rightarrow { S }_{ n+1 }=\frac { n+2 }{ { 2 }^{ n+2 } } \sum _{ i=1 }^{ n+1 }{ \frac { { 2 }^{ i } }{ i } }

S n + 1 = n + 2 2 n + 2 ( X + 2 n + 1 n + 1 ) = n + 2 2 n + 2 ( 2 n + 1 n + 1 S n + 2 n + 1 n + 1 ) \Rightarrow { S }_{ n +1}=\frac { n+2 }{ { 2 }^{ n+2 } } (X+\frac { { 2 }^{ n+1 } }{ n+1 } )=\frac { n+2 }{ { 2 }^{ n+2 } } (\frac { { 2 }^{ n+1 } }{ n+1 } { S }_{ n }+\frac { { 2 }^{ n+1 } }{ n+1 } )

Put n n\longrightarrow\infty

S n + 1 = S n 2 + 1 2 \Rightarrow { S }_{ n+1 }=\frac { { S }_{ n } }{ 2 } +\frac { 1 }{ 2 }

Since series converges, we must have S n + 1 = S n { S }_{ n+1 }={ S }_{ n } once n n is \infty

S n + 1 = S n = 1 \Rightarrow { S }_{ n+1 }={ S }_{ n }=1

Nice approach!

Calvin Lin Staff - 6 years, 3 months ago
Mvs Saketh
Feb 26, 2015

[Can you spot the mistake in this solution? If no, check out the note below.]

Ha! awesome problem,

Let us observe the sequence from the back side, and the truth is far simpler,

n + 1 2 n + 1 ( 2 1 + 4 2 + . . . . . + 2 n 1 n 1 + 2 n n ) = n + 1 2 n + 1 ( 2 n n + 2 n 1 n 1 + . . . . . + 4 2 + 2 1 ) = 1 2 ( n + 1 n ) + 1 4 ( n + 1 n 1 ) . . . . . . . a s n = 1 2 + 1 4 . . . . . . = 1 2 ( 1 1 1 2 ) = 1 \frac { n+1 }{ { 2 }^{ n+1 } } \left( \frac { 2 }{ 1 } +\frac { 4 }{ 2 } +.....+\frac { { 2 }^{ n-1 } }{ n-1 } +\frac { { 2 }^{ n } }{ n } \right) \quad \\ \\ =\frac { n+1 }{ { 2 }^{ n+1 } } \left( \frac { { 2 }^{ n } }{ n } +\frac { { 2 }^{ n-1 } }{ n-1 } +.....+\frac { 4 }{ 2 } +\frac { 2 }{ 1 } \right) \\ =\frac { 1 }{ 2 } \left( \frac { n+1 }{ n } \right) +\frac { 1 }{ 4 } \left( \frac { n+1 }{ n-1 } \right) .......\\ \\ as\quad n\quad \to\quad \infty \\ \\ =\quad \frac { 1 }{ 2 } +\frac { 1 }{ 4 } ......\quad =\quad \frac { 1 }{ 2 } (\frac { 1 }{ 1-\frac { 1 }{ 2 } } )\quad =\quad 1\quad

Moderator note:

In order to apply the limit termwise, what extra conditions must the sequence satisfy?

As a simple counterexample, if we consider the sequence of terms a i , j = 0 , i j a_{i, j } = 0, i \neq j while a i , i = 1 a_{i, i } = 1 , then we have
1 = lim N i a N , i i lim N a N , i = 0. 1 = \lim_{N \rightarrow \infty} \sum_i a_{N, i } \neq \sum_i \lim_{N\rightarrow \infty} a_{N, i } = 0 .

For \to use \to in latex :)

Krishna Sharma - 6 years, 3 months ago

Log in to reply

Thanks :) done

Mvs Saketh - 6 years, 3 months ago

I use rightarrow: \rightarrow

Calvin Lin Staff - 6 years, 3 months ago

how can you prove the last two lines?

Sobir Bobizoda - 4 years, 4 months ago

right arrow:

Sudhamsh Suraj - 4 years, 3 months ago

this is wrong totally the terms are (n+1)/n ,(n+1)/(n-1),............(n+1)/3 ,(n+1)/2,(n+1)/1 now yu cannot write it as all of them tend to 1 when n tends infinity because last terms will also tend to infinity and not 1

Hriday Gupta - 3 years ago

Log in to reply

Indeed. We also have to be careful with the number of terms.

Calvin Lin Staff - 3 years ago

Log in to reply

so what now how is this wrong method wielding right answer

Hriday Gupta - 3 years ago

Log in to reply

@Hriday Gupta Just because it uses the wrong method, doesn't mean that it cannot accidentally yield the correct numerical answer.

Even a stopped clock is correct twice a day.

Calvin Lin Staff - 3 years ago

Log in to reply

@Calvin Lin yeah but not everyone is lucky enough to visit th clock at those times maths has a reason for everything it is just that we cannot figure it out

Hriday Gupta - 3 years ago

Log in to reply

@Hriday Gupta To be clear:

  1. This solution commits a common misconception that many people have. Specifically, they interchange the order of limits without knowing what constraints to apply. This applies to all kinds of limits, including but not restricted to: termwise, summation, integration, differentiation.
  2. A solution with a misconception is not a correct solution. It doesn't matter that the numerical answer just happens to have the correct value, because there is an error in the logic.
  3. Once you identified you have a misconception, please do your best to fix it. For example, if we had "uniform convergence", then we could interchange limits.

Calvin Lin Staff - 3 years ago

i will use Stolz–Cesàro theorem 1

let b n = 2 n + 1 n + 1 b_{n}=\displaystyle \frac{2^{n+1}}{n+1} then b n + 1 b n = 2 n + 2 n + 2 = 2 4 n + 2 2 3 > 1 , n N \displaystyle \frac{b_{n+1}}{b_{n}}=\frac{2n+2}{n+2}=2-\frac{4}{n+2}\geq \frac{2}{3}>1 , \forall n\in \mathbb{N} or b n + 1 > b n , n N b_{n+1}>b_{n} , \forall n\in \mathbb{N} and lim n b n = lim n 2 n + 1 n + 1 = \displaystyle \lim_{n\rightarrow \infty} b_{n}=\lim_{n\rightarrow \infty} \frac{2^{n+1}}{n+1}=\infty

So , if a n = i = 1 n 2 i i \displaystyle a_{n}=\sum_{i=1}^{n} \frac{2^{i}}{i} when lim n a n + 1 a n b n + 1 b n = lim n i = 1 n + 1 2 i i i = 1 n 2 i i 2 n + 2 n + 2 2 n + 1 n + 1 = lim n 2 n + 1 n + 1 2 n + 1 ( n ( n + 1 ) ( n + 2 ) ) = lim n 2 n + 1 n + 1 ( n + 1 ) ( n + 2 ) 2 n + 1 n \displaystyle \lim_{n\rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}} \\ \\ =\displaystyle \lim_{n\rightarrow \infty} \dfrac{\displaystyle \sum_{i=1}^{n+1} \dfrac{2^{i}}{i} - \sum_{i=1}^{n} \dfrac{2^{i}}{i} }{ \dfrac{2^{n+2}}{n+2}-\dfrac{2^{n+1}}{n+1} } \\ =\displaystyle \lim_{n\rightarrow \infty} \dfrac{\displaystyle \dfrac{2^{n+1}}{n+1} }{ 2^{n+1} \left( \dfrac{n}{(n+1)(n+2)} \right) } \\ =\displaystyle \lim_{n\rightarrow \infty} \dfrac{2^{n+1}}{n+1}\dfrac{(n+1)(n+2)}{2^{n+1}n} = lim n n + 2 n = 1 =\displaystyle \lim_{n\rightarrow \infty} \dfrac{n+2}{n}=1

we can use Stolz–Cesàro theorem 1 we get

lim n a n b n = lim n i = 1 n 2 i i 2 n + 1 n + 1 = lim n n + 1 2 n + 1 i = 1 n 2 i i = 1 \displaystyle \lim_{n\rightarrow \infty} \dfrac{a_{n}}{b_{n}}=\displaystyle \lim_{n\rightarrow \infty} \dfrac{\displaystyle \sum_{i=1}^{n}\dfrac{2^{i}}{i}}{\displaystyle \dfrac{2^{n+1}}{n+1}} \\ = \displaystyle \lim_{n\rightarrow \infty} \dfrac{n+1}{2^{n+1}}\sum_{i=1}^{n}\dfrac{2^{i}}{i} = 1

Ayoub Tirdad
Dec 17, 2020

We can show (by induction) that : k = 0 n 1 ( n k ) = n + 1 2 n + 1 k = 1 n + 1 2 k k \displaystyle\sum_{k=0}^n\frac1{\binom{n}{k}}=\frac{n+1}{2^{n+1}}\displaystyle \sum_{k=1}^{n+1}\frac{2^k}{k}

So k = 0 n 1 ( n k ) = S n + n + 1 2 n + 1 2 n + 1 n + 1 = S n + 1 \displaystyle\sum_{k=0}^n\frac1{\binom{n}{k}}=S_n +\frac{n+1}{2^{n+1}} \cdot \frac{2^{n+1}}{n+1}=S_n+1

We still need to manage this sum. But for 2 k n 2 2\le k\le n-2 , ( n k ) ( n 2 ) \binom{n}{k}\ge\binom{n}{2} or 1 ( n k ) 1 ( n 2 ) = 2 n ( n 1 ) \frac{1}{\binom{n}{k}} \leq \frac{1}{\binom{n}{2}} = \frac{2}{n(n-1)} one has for n 4 n\ge 4 ,

2 k = 0 n 1 ( n k ) 2 + 2 n + 2 ( n 3 ) n ( n 1 ) n 2 2 \leq \displaystyle \sum_{k=0}^{n} \frac{1}{\binom{n}{k}} \leq 2 + \frac{2}{n} + \frac{2(n-3)}{n(n-1)} \xrightarrow[n\to\infty]{} 2

We easily get the answer for S n S_n .

Joe Mansley
Aug 9, 2019

Replace 2 with x>1. S = ( n + 1 ) i = 1 n x i / i x n + 1 S = \frac{(n+1)\sum_{i=1}^n x^{i}/i}{x^{n+1}}

Applying Lhopital's rule i = 1 n x i 1 x n \frac{\sum_{i=1}^n x^{i-1}}{x^{n}} Which is equal to x n 1 ( x 1 ) x n \frac{x^{n}-1}{(x-1)x^{n}}

Which tends to 1/(x-1)

Tejas S
Jun 3, 2019

Let a i = 2 i , b i = i a_i=2^i, b_i=i . As n tends to infinity, by stolz cesaro, the limit is n + 1 2 n + 1 ( 2 n + 1 ) n + 1 = 1 \frac{n+1}{2^{n+1}}* \frac{(2^{n+1})}{n+1}=1 . ( As sum i=1 to n+1 2^i/I - sum i=1 to n 2^i/i = 2^n+1/n+1)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...