Cool Inequality #2 Promotion

Algebra Level 5

( i = 1 3 6 x 1 x 2 x 3 6 x i ) 4 \large{\left(\sum _{ i=1 }^{ 3 }{ \frac { \sqrt{6x_{1}x_{2}x_{3}} }{ 6{ x }_{ i } } }\right)^{4}}

If x 1 , x 2 , x 3 > 0 x_{1},x_{2},x_{3} > 0 such that cyclic ( x 1 × x 2 ) 2 = 6 x 1 x 2 x 3 \displaystyle\sum_{\text{cyclic} }^{ }{ ({ x }_{ 1 }\times { x }_{ 2 })^{2} } = 6x_{1}x_{2}x_{3} . Find the maximum value of the expression above.


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Department 8
Sep 12, 2015

By cauchy-Schwarz inequality/ Titu's Lemma, we have:-

( ( x 1 x 2 ) 2 + ( x 2 x 3 ) 2 + ( x 3 x 1 ) 2 ) ( 1 + 1 + 1 ) ( x 1 x 2 + x 2 x 3 + x 3 x 1 ) 2 3 ( x 1 x 2 + x 2 x 3 + x 3 x 1 6 x 1 x 2 x 3 ) 2 9 ( x 1 x 2 6 x 1 x 2 x 3 × 6 x 1 x 2 x 3 6 x 1 x 2 x 3 + x 2 x 3 6 x 1 x 2 x 3 × 6 x 1 x 2 x 3 6 x 1 x 2 x 3 + x 3 x 1 6 x 1 x 2 x 3 × 6 x 1 x 2 x 3 6 x 1 x 2 x 3 ) 4 9 ( i = 1 3 6 x 1 x 2 x 3 6 x i ) 4 \Large{\left( ({ { x }_{ 1 }{ x }_{ 2 } })^{ 2 }+{ ({ x }_{ 2 } }{ x }_{ 3 })^{ 2 }+{ ({ x }_{ 3 }{ x }_{ 1 }) }^{ 2 } \right) (1+1+1)\ge { \left( { x }_{ 1 }{ x }_{ 2 }+{ x }_{ 2 }{ x }_{ 3 }+{ x }_{ 3 }{ x }_{ 1 } \right) }^{ 2 }\\ 3\ge { \left( \frac { { x }_{ 1 }{ x }_{ 2 }+{ x }_{ 2 }{ x }_{ 3 }+{ x }_{ 3 }{ x }_{ 1 } }{ \sqrt { 6{ x }_{ 1 }{ x }_{ 2 }{ x }_{ 3 } } } \right) }^{ 2 }\\ 9\ge { \left( \frac { { x }_{ 1 }{ x }_{ 2 } }{ \sqrt { 6{ x }_{ 1 }{ x }_{ 2 }{ x }_{ 3 } } } \times \frac { \sqrt { 6{ x }_{ 1 }{ x }_{ 2 }{ x }_{ 3 } } }{ \sqrt { 6{ x }_{ 1 }{ x }_{ 2 }{ x }_{ 3 } } } +\frac { { x }_{ 2 }{ x }_{ 3 } }{ \sqrt { 6{ x }_{ 1 }{ x }_{ 2 }{ x }_{ 3 } } } \times \frac { \sqrt { 6{ x }_{ 1 }{ x }_{ 2 }{ x }_{ 3 } } }{ \sqrt { 6{ x }_{ 1 }{ x }_{ 2 }{ x }_{ 3 } } } +\frac { { x }_{ 3 }{ x }_{ 1 } }{ \sqrt { 6{ x }_{ 1 }{ x }_{ 2 }{ x }_{ 3 } } } \times \frac { \sqrt { 6{ x }_{ 1 }{ x }_{ 2 }{ x }_{ 3 } } }{ \sqrt { 6{ x }_{ 1 }{ x }_{ 2 }{ x }_{ 3 } } } \right) }^{ 4 }\\ 9\ge (\sum _{ i=1 }^{ 3 }{ \frac { \sqrt { 6{ x }_{ 1 }{ x }_{ 2 }{ x }_{ 3 } } }{ 6{ x }_{ i } } )^{4} }}

The maximum value would be 9 \boxed{9}

my answer was 16. I applied AM GM property.

Deepanshu Vijay - 5 years, 8 months ago

Log in to reply

I think you got confused with brackets around summation sign that confused my friends too.

Department 8 - 5 years, 8 months ago

What are the values of x 1 , x 2 , x 3 x_1, x_2, x_3 that give 16?

Calvin Lin Staff - 5 years, 8 months ago

Log in to reply

Sir that's my question, why is AM-GM not working here.

Akshat Sharma - 5 years, 8 months ago

Log in to reply

@Akshat Sharma Substantiate your comment by showing your actual working, instead of just stating a very general approach. There could be many reasons why "it is not working", and that depends greatly on the way that you presented it.

In particular, why is it the maximum, and not just an upper bound? E.g. We know that x 2 0 x^2 \geq 0 and ( x + 1 ) 2 0 (x+1)^2 \geq 0 . Does this mean that the minimum of x 2 + ( x + 1 ) 2 x^2 + (x+1)^2 is 0?

Calvin Lin Staff - 5 years, 8 months ago

I also did it using AM-GM amd I got the answer as 9.

Samarth Agarwal - 5 years, 8 months ago

Log in to reply

How had you got that can you please tell.

Akshat Sharma - 5 years, 8 months ago
Chew-Seong Cheong
Oct 13, 2015

Let the expression be S S , then we have:

S = ( 6 x 1 x 2 x 3 6 [ 1 x 1 + 1 x 2 + 1 x 3 ] ) 4 = ( 6 x 1 x 2 x 3 6 x 1 x 2 x 3 ( x 1 x 2 + x 2 x 3 + x 3 x 1 ) ) 4 = ( x 1 x 2 + x 2 x 3 + x 3 x 1 ) 4 ( 6 x 1 x 2 x 3 ) 2 See Note. ( 18 x 1 x 2 x 3 ) 2 ( 6 x 1 x 2 x 3 ) 2 = 9 \begin{aligned} S & = \left( \frac{\sqrt{6x_1x_2x_3}}{6} \left[\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} \right] \right)^4 \\ & = \left( \frac{\sqrt{6x_1x_2x_3}}{6x_1x_2x_3} \left( x_1x_2 + x_2x_3 + x_3x_1 \right) \right)^4 \\ & = \frac {\color{#3D99F6}{( x_1x_2 + x_2x_3 + x_3x_1)^4}}{(6x_1x_2x_3)^2} \quad \quad \small \color{#3D99F6}{\text{See Note.}} \\ & \le \frac {\color{#3D99F6}{( 18x_1x_2 x_3)^2}}{(6x_1x_2x_3)^2} \\ & = \boxed{9} \end{aligned}

\\

Note: By Cauchy-Schwarz inequality, we have \color{#3D99F6}{\text{Note: By Cauchy-Schwarz inequality, we have }}

( x 1 x 2 + x 2 x 3 + x 3 x 1 ) 2 3 ( ( x 1 x 2 ) 2 + ( x 2 x 3 ) 2 + ( x 3 x 1 ) 2 ) = 18 x 1 x 2 x 3 \color{#3D99F6}{( x_1x_2 + x_2x_3 + x_3x_1)^2 \le 3 \left( (x_1x_2)^2 + (x_2x_3)^2 + (x_3x_1)^2\right) = 18x_1x_2x_3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...