Cosines And Pies

Geometry Level 4

cos π 15 cos 2 π 15 cos 3 π 15 cos 4 π 15 cos 5 π 15 cos 6 π 15 cos 7 π 15 = 2 n \large\cos\dfrac{\pi}{15}\cos\dfrac{2{\pi}}{15}\cos\dfrac{3{\pi}}{15}\cos\dfrac{4{\pi}}{15}\cos\dfrac{5{\pi}}{15}\cos\dfrac{6{\pi}}{15}\cos\dfrac{7{\pi}}{15}= 2^n .

Find the value of n n satisfying the equation above.


The answer is -7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Ishan Singh
Apr 27, 2016

Let C = r = 1 7 cos ( r π 15 ) \displaystyle\text{C}=\prod_{r=1}^{7}\cos{\left(\dfrac{r\pi}{15}\right)}

and

S = r = 1 7 sin ( r π 15 ) \displaystyle\text{S}=\prod_{r=1}^{7}\sin{\left(\dfrac{r\pi}{15}\right)}

Now,

C S = ( sin π 15 cos π 15 ) ( sin 2 π 15 cos 2 π 15 ) ( sin 7 π 15 cos 7 π 15 ) \text{C}\cdot\text{S}=\left(\sin{\dfrac{\pi}{15}} \cdot \cos{\dfrac{\pi}{15}}\right) \cdot \left(\sin{\dfrac{2\pi}{15}}\cdot\cos{\dfrac{2\pi}{15}}\right)\cdot \ldots \cdot\left(\sin{\dfrac{7\pi}{15}} \cdot \cos{\dfrac{7\pi}{15}}\right)

C S = 1 2 7 ( 2 sin π 15 cos π 15 ) ( 2 sin 2 π 15 cos 2 π 15 ) ( 2 sin 7 π 15 cos 7 π 15 ) \implies \text{C}\cdot\text{S}= \dfrac{1}{2^7} \left(2\sin{\dfrac{\pi}{15}} \cdot \cos{\dfrac{\pi}{15}}\right) \cdot \left(2\sin{\dfrac{2\pi}{15}}\cdot\cos{\dfrac{2\pi}{15}}\right)\cdot \ldots \cdot\left(2\sin{\dfrac{7\pi}{15}} \cdot \cos{\dfrac{7\pi}{15}}\right)

C S = 1 2 7 sin 2 π 15 sin 4 π 15 sin 14 π 15 \implies \text{C}\cdot\text{S}= \dfrac{1}{2^7} \ \sin{\dfrac{2\pi}{15}}\cdot\sin{\dfrac{4\pi}{15}}\cdot \ldots \cdot\sin{\dfrac{14\pi}{15}}

{ sin ( 2 x ) = 2 sin ( x ) cos ( x ) } \{\because \sin(2x) = 2\sin (x) \cos (x) \}

C S = 1 2 7 sin π 15 sin 2 π 15 sin 7 π 15 { sin ( π x ) = sin ( x ) } \implies \text{C}\cdot\text{S}= \dfrac{1}{2^7} \ \sin{\dfrac{\pi}{15}}\cdot\sin{\dfrac{2\pi}{15}} \cdot \ldots \cdot \sin{\dfrac{7\pi}{15}} \\\\ \{\because \sin(\pi-x)=\sin(x)\}

C S = 1 2 7 S \implies \text{C}\cdot\text{S}= \dfrac{1}{2^7} \cdot \text{S}

since S 0 \text{S} \neq 0 ,

C = 1 2 7 \therefore \boxed{\text{C}=\dfrac{1}{2^7}}


In general,

r = 1 n cos ( r π 2 n + 1 ) = 1 2 n \prod_{r=1}^n \cos\left(\frac{r\pi}{2n+1}\right) = \frac{1}{2^n}

Otto Bretscher
Apr 26, 2016

k = 1 n 2 cos ( k π n ) = k = 1 n e i k π / n + e i k π / n = k = 1 n 1 e 2 i k π / n = 2 \prod_{k=1}^{n}2|\cos(\frac{k\pi}{n})|=\prod_{k=1}^{n}|e^{ik\pi/n}+e^{-ik\pi/n}|=\prod_{k=1}^{n}|-1-e^{2ik\pi/n}|=2 for odd n n , since

k = 1 n ( x e 2 i k π / n ) = x n 1 \prod_{k=1}^{n}(x-e^{2ik\pi/n})=x^n-1 . Now k = 1 ( n 1 ) / 2 cos ( k π n ) = 1 2 ( n 1 ) / 2 \prod_{k=1}^{(n-1)/2}\cos(\frac{k\pi}{n})=\frac{1}{2^{(n-1)/2}} . For n = 15 n=15 this is 2 7 2^{\boxed{-7}} .

Please explain the third step.

Saurabh Chaturvedi - 5 years, 1 month ago

Log in to reply

Do you mean k = 1 n 1 e 2 i k π / n = 2 \prod_{k=1}^{n}|-1-e^{2ik\pi/n}|=2 ? We plug x = 1 x=-1 into k = 1 n ( x e 2 i k π / n ) = x n 1 \prod_{k=1}^{n}(x-e^{2ik\pi/n})=x^n-1 .

Otto Bretscher - 5 years, 1 month ago

Log in to reply

Could you please explain the last step as well?

Milind Blaze - 5 years, 1 month ago

Log in to reply

@Milind Blaze In the first line we find k = 1 n cos ( k π n ) = 1 2 n 1 \prod_{k=1}^{n}|\cos(\frac{k\pi}{n})|=\frac{1}{2^{n-1}} , so, by symmetry, k = 1 ( n 1 ) / 2 cos ( k π n ) = 1 2 ( n 1 ) / 2 \prod_{k=1}^{(n-1)/2}\cos(\frac{k\pi}{n})=\frac{1}{2^{(n-1)/2}} .

Otto Bretscher - 5 years, 1 month ago

Log in to reply

@Otto Bretscher Oh... sorry about that, I had forgotten that there was a 2 in the product to begin with... so isn't this akin to replacing n by n-1/2? If so should it not be n-3/2? (sorry for asking so many questions... i am not really that familiar with you approach to this problem...)

Milind Blaze - 5 years, 1 month ago

Log in to reply

@Milind Blaze No problem; I'm glad to see that you are studying my solution ;) The use of complex numbers allows for a short solution, but this approach takes a little getting used to.

We can write the first line as 2 n k = 1 n 1 cos ( k π n ) = 2 2^n\prod_{k=1}^{n-1}|\cos(\frac{k\pi}{n})|=2 . Now divide by 2 n 2^n and take the square root, using the symmetry cos ( π t ) = cos ( t ) \cos(\pi-t)=-\cos(t) .

Otto Bretscher - 5 years, 1 month ago

Log in to reply

@Otto Bretscher Oh...ok. Thanks a lot!

Milind Blaze - 5 years, 1 month ago

Thanks! It wasn't very obvious to me, perhaps due to the modulus sign.

Saurabh Chaturvedi - 5 years, 1 month ago
Chew-Seong Cheong
Apr 25, 2016

P = cos π 15 cos 2 π 15 cos 3 π 15 cos 4 π 15 cos 5 π 15 cos 6 π 15 cos 7 π 15 = cos π 15 cos 2 π 15 cos 3 π 15 cos 4 π 15 ( 1 2 ) cos 6 π 15 ( cos 8 π 15 ) = 1 2 ( cos π 15 cos 2 π 15 cos 4 π 15 cos 8 π 15 ) ( cos 3 π 15 cos 6 π 15 ) = 1 2 ( sin π 15 cos π 15 cos 2 π 15 cos 4 π 15 cos 8 π 15 sin π 15 ) ( sin π 5 cos π 5 cos 2 π 5 sin π 5 ) = 1 2 ( sin 2 π 15 cos 2 π 15 cos 4 π 15 cos 8 π 15 2 sin π 15 ) ( sin 2 π 5 cos 2 π 5 2 sin π 5 ) = 1 2 ( sin 4 π 15 cos 4 π 15 cos 8 π 15 2 2 sin π 15 ) ( sin 4 π 5 2 2 sin π 5 ) = 1 2 ( sin 8 π 15 cos 8 π 15 2 3 sin π 15 ) ( sin π 5 2 2 sin π 5 ) = 1 2 ( sin 16 π 15 2 4 sin π 15 ) ( 1 2 2 ) = 1 2 ( sin π 15 2 4 sin π 15 ) ( 1 2 2 ) = 1 2 ( 1 2 4 ) ( 1 2 2 ) = 1 2 7 \begin{aligned} P & = \cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \color{#3D99F6}{\cos \frac{5\pi}{15}} \cos \frac{6\pi}{15} \color{#D61F06}{\cos \frac{7\pi}{15}} \\ & = \cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \color{#3D99F6}{\left(\frac{1}{2}\right)} \cos \frac{6\pi}{15} \color{#D61F06}{\left(-\cos \frac{8\pi}{15}\right)} \\ & = -\frac{1}{2} \left(\cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15} \right) \left(\cos \frac{3\pi}{15} \cos \frac{6\pi}{15} \right) \\ & = -\frac{1}{2} \left(\frac{\sin \frac{\pi}{15} \cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15}}{\sin \frac{\pi}{15}} \right) \left(\frac{\sin \frac{\pi}{5} \cos \frac{\pi}{5} \cos \frac{2\pi}{5}}{\sin \frac{\pi}{5}} \right) \\ & = -\frac{1}{2} \left(\frac{\sin \frac{2\pi}{15} \cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15}}{2 \sin \frac{\pi}{15}} \right) \left(\frac{\sin \frac{2\pi}{5} \cos \frac{2\pi}{5}}{2 \sin \frac{\pi}{5}} \right) \\ & = -\frac{1}{2} \left(\frac{\sin \frac{4\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15}}{2^2 \sin \frac{\pi}{15}} \right) \left(\frac{\sin \frac{4\pi}{5}}{2^2 \sin \frac{\pi}{5}} \right) \\ & = -\frac{1}{2} \left(\frac{\sin \frac{8\pi}{15} \cos \frac{8\pi}{15}}{2^3 \sin \frac{\pi}{15}} \right) \left(\frac{\sin \frac{\pi}{5}}{2^2 \sin \frac{\pi}{5}} \right) \\ & = -\frac{1}{2} \left(\frac{\sin \frac{16\pi}{15}}{2^4 \sin \frac{\pi}{15}} \right) \left(\frac{1}{2^2} \right) \\ & = -\frac{1}{2} \left(\frac{-\sin \frac{\pi}{15}}{2^4 \sin \frac{\pi}{15}} \right) \left(\frac{1}{2^2} \right) \\ & = -\frac{1}{2} \left(\frac{-1}{2^4} \right) \left(\frac{1}{2^2} \right) \\ & = \frac{1}{2^7} \end{aligned}

n = 7 \implies n = \boxed{-7}

Milind Blaze
Apr 27, 2016

All the angles are in degrees for the sake of convenience. Consider

( c o s 6 0 θ cos 60^\circ-\theta )( c o s θ cos \theta )( c o s 6 0 + θ cos 60^\circ+\theta ) = 1 4 \dfrac{1}{4} c o s 3 θ cos 3\theta (The above is easy to prove by expanding.)

The given problem is of the form

P= c o s 1 2 cos 12^\circ c o s 2 4 cos 24^\circ c o s 3 6 cos 36^\circ c o s 4 8 cos 48^\circ c o s 6 0 cos 60^\circ c o s 7 2 cos 72^\circ c o s 8 4 cos 84^\circ

Regrouping,

P=( c o s 3 6 cos 36^\circ c o s 2 4 cos 24^\circ c o s 8 4 cos 84^\circ )( c o s 4 8 cos 48^\circ c o s 1 2 cos 12^\circ c o s 7 2 cos 72^\circ ) c o s 6 0 cos 60^\circ

P=( c o s 6 0 2 4 cos 60^\circ-24^\circ )( c o s 2 4 cos 24^\circ )( c o s 6 0 + 2 4 cos 60^\circ+24^\circ )( c o s 6 0 1 2 cos 60^\circ-12^\circ )( c o s 1 2 cos 12^\circ c o s 6 0 + 1 2 cos 60^\circ+12^\circ )( c o s 6 0 cos 60^\circ )

P= 1 4 \dfrac{1}{4} c o s 7 2 cos 72^\circ 1 4 \dfrac{1}{4} c o s 3 6 cos 36^\circ 1 2 \dfrac{1}{2}

P= 1 2 5 \dfrac{1}{2^{5}} ( 5 1 4 \dfrac{\sqrt{5}-1}{4} )( 5 + 1 4 \dfrac{\sqrt{5}+1}{4} )

P= 1 2 7 \dfrac{1}{2^{7}}

Hence the answer is -7.

nice observation;)

Rakshit Joshi - 5 years, 1 month ago

Π k = 1 n 1 C o s k π 2 n = S i n n π 2 2 n 1 B u t f o r o d d n , Π k = 1 n 1 2 C o s k π 2 n = Π k = n + 1 2 n 1 C o s k π 2 n Π k = 1 14 C o s S i n ( k π 2 ) 14 = 1 2 14 = 2 7 \Large \displaystyle \Pi_{k=1}^{n-1}Cos\frac{\frac{k*\pi} 2} n=\dfrac{Sin\frac{n*\pi} 2}{2^{n-1}}\\ But~for ~ odd~ n, ~~ \Large \displaystyle \Pi_{k=1}^{\frac {n-1} 2}Cos\dfrac{\frac{k*\pi}2} n=\color{#3D99F6}{ - } \Pi_{k= \frac{ n+1} 2 }^{n-1 }Cos\dfrac{\frac{k*\pi} 2} n \\ \therefore \Large \displaystyle \Pi_{k=1}^{14}Cos\dfrac{Sin(\frac{k*\pi} 2)}{14} =\sqrt {\dfrac1 {2^{14}}}=2^{-7}

Ahmad Saad
Apr 25, 2016

Harry Jones
Mar 26, 2017

Generalization: k = 1 n 1 cos k π n = ( i 2 ) n 1 \displaystyle\prod_{k=1}^{n-1}\cos\dfrac{k\pi}{n}=\left(\dfrac{i}{2}\right)^{n-1} where n is odd natural number

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...