Cos is nice

Geometry Level 5

cos 7 x + cos 7 ( x + 2 π 3 ) + cos 7 ( x + 4 π 3 ) = 0. \cos^7 x + \cos^7 \left( x + \dfrac{2\pi}3 \right)+ \cos^7 \left( x + \dfrac{4\pi}3 \right) = 0 .

Determine the number of roots of x x in the interval [ 0 , 2 π ] [0,2\pi ] that satisfy the equation above.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 30, 2015

Let a = cos x a = \cos x , b = cos ( x + 2 π 3 ) b = \cos \left(x + \dfrac{2\pi}{3}\right) and c = cos ( x + 4 π 3 ) c = \cos \left(x + \dfrac{4\pi}{3}\right) . Then we have:

a + b + c = cos x + cos ( x + 2 π 3 ) + cos ( x + 4 π 3 ) = cos x 1 2 cos x + 3 2 sin x 1 2 cos x 3 2 sin x = 0 a b + b c + c a = cos x cos ( x + 2 π 3 ) + cos ( x + 2 π 3 ) cos ( x + 4 π 3 ) + cos ( x + 4 π 3 ) cos x = cos x ( 1 2 cos x 3 2 sin x ) + ( 1 2 cos x 3 2 sin x ) ( 1 2 cos x + 3 2 sin x ) ( 1 2 cos x + 3 2 sin x ) cos x = 1 2 cos 2 x + 3 2 sin x cos x + 1 4 cos 2 x 3 4 sin 2 x 1 2 cos 2 x 3 2 sin x cos x = 3 4 a b c = cos x cos ( x + 2 π 3 ) cos ( x + 4 π 3 ) = cos x ( 1 2 cos x 3 2 sin x ) ( 1 2 cos x + 3 2 sin x ) = cos x ( 1 4 cos 2 x 3 4 sin 2 x ) = cos x ( cos 2 x 3 4 ) = 1 4 cos ( 3 x ) \begin{aligned} \color{#3D99F6}{a+b+c} & = \cos x + \cos \left(x + \frac{2\pi}{3}\right) + \cos \left(x + \frac{4\pi}{3}\right) \\ & = \cos x - \frac{1}{2} \cos x + \frac{\sqrt{3}}{2} \sin x - \frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x \\ & = \color{#3D99F6}{0} \\ & \\ \color{#3D99F6}{ab + bc + ca} & = \cos x \cos \left(x + \frac{2\pi}{3}\right) + \cos \left(x + \frac{2\pi}{3}\right)\cos \left(x + \frac{4\pi}{3}\right) + \cos \left(x + \frac{4\pi}{3}\right) \cos x \\ & = - \cos x \left( \frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x \right) + \left( \frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x \right) \left( \frac{1}{2} \cos x + \frac{\sqrt{3}}{2} \sin x \right) - \left( \frac{1}{2} \cos x + \frac{\sqrt{3}}{2} \sin x \right) \cos x \\ & = - \frac{1}{2} \cos^2 x + \frac{\sqrt{3}}{2} \sin x \cos x + \frac{1}{4} \cos^2 x - \frac{3}{4} \sin^2 x - \frac{1}{2} \cos^2 x - \frac{\sqrt{3}}{2} \sin x \cos x \\ & = \color{#3D99F6}{- \frac{3}{4}} \\ & \\ \color{#3D99F6}{abc} & = \cos x \cos \left(x + \frac{2\pi}{3}\right) \cos \left(x + \frac{4\pi}{3}\right) \\ & = \cos x \left( \frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x \right) \left( \frac{1}{2} \cos x + \frac{\sqrt{3}}{2} \sin x \right) \\ & = \cos x \left( \frac{1}{4} \cos^2 x - \frac{3}{4} \sin^2 x \right) \\ & = \cos x \left( \cos^2 x - \frac{3}{4} \right) \\ & = \color{#3D99F6}{ \frac{1}{4} \cos (3x) } \end{aligned}

Now we can find a 7 + b 7 + c 7 = cos 7 x + cos 7 ( x + 2 π 3 ) + cos 7 ( x + 4 π 3 ) a^7+b^7+c^7 = \cos^7 x + \cos^7 \left(x + \dfrac{2\pi}{3}\right) + \cos^7 \left(x + \dfrac{4\pi}{3}\right) using Newton's sums method as follows:

a 2 + b 2 + c 2 = ( a + b + c ) 2 2 ( a b + b c + c a ) = 0 2 ( 3 4 ) = 3 2 a 3 + b 3 + c 3 = ( a + b + c ) 3 2 + ( a b + b c + c a ) ( 0 ) + 3 a b c = 0 + 3 4 ( 0 ) + 3 × 1 4 cos ( 3 x ) = 3 4 cos ( 3 x ) a 4 + b 4 + c 4 = ( a + b + c ) 3 4 cos ( 3 x ) + ( a b + b c + c a ) 3 2 + a b c ( 0 ) = 0 + 3 4 × 3 2 + 1 4 cos ( 3 x ) ( 0 ) = 9 8 a 5 + b 5 + c 5 = 0 + 3 4 × 3 4 cos ( 3 x ) + 1 4 cos ( 3 x ) × 3 2 = 15 16 cos ( 3 x ) a 7 + b 7 + c 7 = 0 + 3 4 × 15 16 cos ( 3 x ) + 1 4 cos ( 3 x ) × 9 8 = 63 64 cos ( 3 x ) \begin{aligned} a^2+b^2+c^2 & = (a+b+c)^2 - 2(ab+bc+ca) = 0 - 2 \left(-\frac{3}{4} \right) = \frac{3}{2} \\ a^3+b^3+c^3 & = (a+b+c) \frac{3}{2} + (ab+bc+ca)(0) + 3 abc = 0 + \frac{3}{4}(0) + 3 \times \frac{1}{4} \cos (3x) = \frac{3}{4} \cos (3x) \\ a^4+b^4+c^4 & =(a+b+c) \frac{3}{4} \cos (3x) + (ab+bc+ca) \frac{3}{2} + abc(0)= 0 + \frac{3}{4}\times \frac{3}{2} + \frac{1}{4} \cos (3x) (0) = \frac{9}{8} \\ a^5+b^5+c^5 & = 0 + \frac{3}{4}\times \frac{3}{4} \cos (3x) + \frac{1}{4} \cos (3x) \times \frac{3}{2} = \frac{15}{16} \cos (3x) \\ a^7+b^7+c^7 & = 0 + \frac{3}{4}\times \frac{15}{16} \cos (3x) + \frac{1}{4} \cos (3x) \times \frac{9}{8} = \frac{63}{64} \cos (3x) \end{aligned}

Therefore,

cos 7 x + cos 7 ( x + 2 π 3 ) + cos 7 ( x + 4 π 3 ) = 63 64 cos ( 3 x ) = 0 \begin{aligned} \cos^7 x + \cos^7 \left(x + \frac{2\pi}{3}\right) + \cos^7 \left(x + \frac{4\pi}{3}\right) = \frac{63}{64} \cos (3x) = 0 \end{aligned}

And its roots in [ 0 , 2 π ] [0, 2\pi ] are π 6 , π 2 , 5 π 6 , 7 π 6 , 3 π 2 , 11 π 6 \dfrac{\pi}{6}, \dfrac{\pi}{2}, \dfrac{5\pi}{6}, \dfrac{7\pi}{6}, \dfrac{3\pi}{2}, \dfrac{11\pi}{6} . The number of roots is 6 \boxed{6} .

I don't understand, how did you form all these equations?

a 4 + b 4 + c 4 = 0 + 3 4 × 3 2 + 1 4 cos ( 3 x ) ( 0 ) = 9 8 a 5 + b 5 + c 5 = 0 + 3 4 × 3 4 cos ( 3 x ) + 1 4 cos ( 3 x ) × 3 2 = 15 16 cos ( 3 x ) a 7 + b 7 + c 7 = 0 + 3 4 × 15 16 cos ( 3 x ) + 1 4 cos ( 3 x ) × 9 8 = 63 64 cos ( 3 x ) \begin{aligned} a^4+b^4+c^4 & = 0 + \frac{3}{4}\times \frac{3}{2} + \frac{1}{4} \cos (3x) (0) = \frac{9}{8} \\ a^5+b^5+c^5 & = 0 + \frac{3}{4}\times \frac{3}{4} \cos (3x) + \frac{1}{4} \cos (3x) \times \frac{3}{2} = \frac{15}{16} \cos (3x) \\ a^7+b^7+c^7 & = 0 + \frac{3}{4}\times \frac{15}{16} \cos (3x) + \frac{1}{4} \cos (3x) \times \frac{9}{8} = \frac{63}{64} \cos (3x) \end{aligned}

Pi Han Goh - 5 years, 5 months ago

Log in to reply

Sorry, I was using Newton's sums.

Chew-Seong Cheong - 5 years, 5 months ago

Log in to reply

Sorry, I still don't understand you. Why do you think that Newton's sum is applicable? You got the values of a + b + c a+b+c and a b + a c + b c ab+ac+bc , and a b c = 1 4 cos ( 3 x ) abc = \dfrac14 \cos(3x) (assuming that's correct). What makes you think that a , b , c a,b,c are roots of a cubic polynomial?

Pi Han Goh - 5 years, 5 months ago

Log in to reply

@Pi Han Goh a n + b n + c n = ( a + b + c ) ( a n 1 + b n 1 + c n 1 ) ( a b + b c + c d ) ( a n 2 + b n 2 + c n 2 + a b c ( a n 3 + b n 3 + c n 3 a^n+b^n+c^n = (a+b+c)(a^{n-1}+b^{n-1}+c^{n-1}) - (ab+bc+cd) (a^{n-2} + b^{n-2}+c^{n-2} + abc (a^{n-3}+b^{n-3}+c^{n-3} is an identity. It works for all values of a a , b b and c c . I have checked my calculations against actual calculated results.

Chew-Seong Cheong - 5 years, 5 months ago

Log in to reply

@Chew-Seong Cheong Oh, got it! silly me! I confused Newton's sum with Vieta's. Nice solution! +1

Pi Han Goh - 5 years, 5 months ago
Priyesh Pandey
Jan 2, 2016

First simplify cos(x+2 pi/3) and cos(x+4 pi/3) Then take cos(x)^7 common i.e, cosx^7(1+(-1/2^7)((1+sqrt(3) tanx)^7+ (1-sqrt(3) tanx)^7)). Then use binomial expansion to eliminate odd terms. Finally, by observing the resulting sum and sub stituting tanx =(+-)1/sqrt(3) we find the equation holds true, there exists 4 such values in given interval also if cosx=0 equation still hold true and this happens at two such values in given interval. Therefore a total of 6 values.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...