Counting the powers

  • Let a a be the remainder of 3 1234567890 \large {{3}}^{1234567890} upon division by 8.

  • Similarly let b b be the remainder of 5 1234567890 \large { {5}}^{1234567890} upon division by 6.

Then, what is a + b a+b ?


Want some interesting questions like this?. Enter the world where Calculators will not help


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Abhay Tiwari
Jun 13, 2016

3 1234567890 8 + 5 1234567890 6 \large \dfrac{{\color{#3D99F6} {3}}^{1234567890}}{8} + \dfrac{{\color{#D61F06} {5}}^{1234567890}}{6}

9 617283945 8 + 25 617283945 6 \large \dfrac{{\color{#3D99F6} {9}}^{617283945}}{8} + \dfrac{{\color{#D61F06} {25}}^{617283945}}{6}

( 8 + 1 ) 617283945 8 + ( 24 + 1 ) 617283945 6 \large \dfrac{{\color{#3D99F6} {(8+1)}}^{617283945}}{8} + \dfrac{{\color{#D61F06} {(24+1)}}^{617283945}}{6}

1 617283945 8 + 1 617283945 6 \large \dfrac{{\color{#3D99F6} {1}}^{617283945}}{8} + \dfrac{{\color{#D61F06} {1}}^{617283945}}{6}

So remainder in both the fractions is 1 1

So, 1 + 1 = 2 1+1=2

Nicely done:) +1!

Rishabh Tiwari - 5 years ago

Log in to reply

Thanks a lot, Tiwari ji ;).

Abhay Tiwari - 5 years ago

Log in to reply

Lol, two of my tiwari friends here.

Ashish Menon - 5 years ago

Log in to reply

@Ashish Menon Ya right lol!,;)

Rishabh Tiwari - 5 years ago

Haaha ;) Thnx u2 tiwariji ! :-):-)

Rishabh Tiwari - 5 years ago

Perfect solution!!! (+1)

Ashish Menon - 5 years ago

Log in to reply

Thanks a lot :)

Abhay Tiwari - 5 years ago
Terry Smith
Jul 2, 2016

3 taken to an even power is always 1 mod 8

5 taken to an even power is always 1 mod 6

1 plus 1 is two. I'm delighted to write this to a bunch of postgrad (or WILL be) math types....

Relevant wiki: Modular Arithmetic - Multiplication

Observe that 9 = 3 2 1 m o d 8 9=3^2\equiv 1 \mod{8} 3 1234567890 = 9 617283945 1 617283945 1 m o d 8 a = 1 \therefore 3^{1234567890}=9^{617283945}\equiv 1^{617283945}\equiv 1 \mod{8}\Rightarrow \boxed{a=1} And 5 1 m o d 6 5\equiv -1\mod{6} 5 1234567890 ( 1 ) 1234567890 1 m o d 6 b = 1 \therefore 5^{1234567890}\equiv (-1)^{1234567890}\equiv 1 \mod{6}\Rightarrow \boxed{b=1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...