Crossover-101(BITSAT-2015)

Calculus Level 5

Suppose A = n = 0 1 ( 2 n ) ! \large \displaystyle A=\sum _{ n=0 }^{ \infty }{ \frac { 1 }{ (2n)! } } .

Then which one of the following is equal to A 2 A^2 ?

  1. 1 2 + n = 1 2 2 n 1 ( 2 n ) ! \large \displaystyle \frac{1}{2}+\sum _{ n=1 }^{ \infty }{ \frac { { 2 }^{ 2n-1 } }{ (2n)! } }

  2. n = 0 1 ( ( 2 n ) ! ) 2 \large \displaystyle \sum _{ n=0}^{ \infty }{ \frac { 1 }{ { ((2n)!) }^{ 2 } } }

  3. 1 + n = 1 2 2 n 1 ( 2 n ) ! \large \displaystyle 1+\sum _{ n=1 }^{ \infty }{ \frac { { 2 }^{ 2n-1 } }{ (2n)! } }

  4. 1 2 + n = 1 2 2 n ( 2 n ) ! \large \displaystyle \frac{1}{2}+\sum _{ n=1 }^{ \infty }{ \frac { { 2 }^{ 2n} }{ (2n)! } }

3 4 2 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

This problem appeared in the BITSAT-2015 test that I wrote. I liked it, as it was one of the more interesting questions in the paper.

Using series expansion:

A = cos i x A= \cos{ix} , where i = 1 i=\sqrt{-1}

A 2 = cos 2 i x = 1 + cos 2 i x 2 \Rightarrow A^2=\cos^2{ix}=\frac{1+\cos{2ix}}{2}

Use series expansion again on cos 2 i x \cos{2ix} to get option 3 3 .

How much did u get?? @Raghav Vaidyanathan

Aditya Kumar - 6 years ago

Log in to reply

good question!

Nishant Rai - 6 years ago

Thanks.. Good ques!

Shweta Salelkar - 6 years ago

Nice problem! In my paper also there were few nice problems(only in maths).

Krishna Sharma - 6 years ago

how much did u get??

rajat kharbanda - 6 years ago

For BITSAT 2015 discussion go here

Kunal Joshi - 6 years ago

Used cosh \cosh instead.

Jake Lai - 6 years ago
Aditya Kumar
May 21, 2015

W e k n o w t h a t , c o s h ( x ) = e x + e x 2 = 1 + 1 2 ! x 2 + 1 4 ! x 4 + 1 6 ! x 6 + . . . c o s h ( 1 ) = n = 0 1 ( 2 n ) ! = A ( c o s h ( 1 ) ) 2 = A 2 = [ e 1 + e 1 2 ] 2 = e 2 + e 2 + 2 4 = 1 2 + 1 4 [ 1 + 2 + 2 2 2 ! + 2 3 3 ! + 2 4 4 ! + . . . ] + 1 4 [ 1 2 + 2 2 2 ! 2 3 3 ! + 2 4 4 ! . . . ] = 1 2 + 1 2 [ 1 + 2 2 2 ! + 2 4 4 ! + . . . ] = 1 + n = 1 2 2 n 1 ( 2 n ) ! We\quad know\quad that,\\ cosh(x)\quad =\quad \frac { { e }^{ x }+{ e }^{ -x } }{ 2 } \\ \quad \quad \quad \quad \quad \quad \quad =\quad 1+\frac { 1 }{ 2! } { x }^{ 2 }+\frac { 1 }{ 4! } { x }^{ 4 }+\frac { 1 }{ 6! } { x }^{ 6 }+...\\ \therefore cosh(1)\quad =\quad \sum _{ n=0 }^{ \infty }{ \frac { 1 }{ (2n)! } } =\quad { A }\quad \\ \therefore { (cosh(1)) }^{ 2 }\quad =\quad { A }^{ 2 }\quad =\quad { \left[ \frac { { e }^{ 1 }+{ e }^{ -1 } }{ 2 } \right] }^{ 2 }\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \frac { { e }^{ 2 }+{ e }^{ -2 }+2 }{ 4 } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \frac { 1 }{ 2 } +\frac { 1 }{ 4 } \left[ 1+2+\frac { { 2 }^{ 2 } }{ 2! } +\frac { { 2 }^{ 3 } }{ 3! } +\frac { { 2 }^{ 4 } }{ 4! } +... \right] +\frac { 1 }{ 4 } \left[ 1-2+\frac { { 2 }^{ 2 } }{ 2! } -\frac { { 2 }^{ 3 } }{ 3! } +\frac { { 2 }^{ 4 } }{ 4! } -... \right] \quad \quad \quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \frac { 1 }{ 2 } +\frac { 1 }{ 2 } \left[ 1+\frac { { 2 }^{ 2 } }{ 2! } +\frac { { 2 }^{ 4 } }{ 4! } +... \right] \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad 1+\sum _{ n=1 }^{ \infty }{ \frac { { 2 }^{ 2n-1 } }{ (2n)! } } \quad \quad \quad \quad \quad

I hope I am right. If wrong, do correct me!

c o s h ( x ) = c o s ( i x ) cosh(x)=cos(ix)

Raghav Vaidyanathan - 6 years ago

Log in to reply

I just added the detailed solution of what u mentioned, for those who are new to it.

Aditya Kumar - 6 years ago

Log in to reply

ok. +1

Raghav Vaidyanathan - 6 years ago

Log in to reply

@Raghav Vaidyanathan Thanks! Any day!

Aditya Kumar - 6 years ago

@Raghav Vaidyanathan Btw, did you find any more tough questions in bits??

Aditya Kumar - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...