Cube roots equation

Algebra Level 5

15 x 1 3 + 13 x + 1 3 = 4 x 3 \large\sqrt[3]{15x-1}+\sqrt[3]{13x+1}=4\sqrt[3]{x}

If the sum of all real roots x x that satisfy the equation above can be expressed as a b - \dfrac{a}b , where a a and b b are coprime positive integers, find a + b a+b .

If you think that no solution exists, submit your answer as 666.

Clarification : x 3 = x 3 \sqrt[3]{-x} = -\sqrt[3]{x} for all real x x .


The answer is 85.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Jun 30, 2016

Relevant wiki: Radical Equations - Intermediate

Solution suggested by @Harsh Shrivastava

15 x 1 3 + 13 x + 1 3 = 4 x 3 15 x 1 3 + 13 x + 1 3 + ( 4 x 3 ) = 0 ( 15 x 1 3 ) 3 + ( 13 x + 1 3 ) 3 + ( 4 x 3 ) 3 = 3 ( 15 x 1 3 ) ( 13 x + 1 3 ) ( 4 x 3 ) 15 x 1 + 13 x + 1 64 x = 12 195 x 3 + 2 x 2 x 3 36 x = 12 195 x 3 + 2 x 2 x 3 3 x = 195 x 3 + 2 x 2 x 3 27 x 3 = 195 x 3 + 2 x 2 x 168 x 3 + 2 x 2 x = 0 x ( 14 x 1 ) ( 12 x + 1 ) = 0 x = 0 , 1 14 , 1 12 \begin{aligned} \sqrt[3]{15x-1} + \sqrt[3]{13x+1} & = 4 \sqrt[3]{x} \\ \implies \sqrt[3]{15x-1} + \sqrt[3]{13x+1} + (-4 \sqrt[3]{x}) & = 0 \\ \implies (\sqrt[3]{15x-1})^3 + (\sqrt[3]{13x+1})^3 + (-4 \sqrt[3]{x})^3 & = 3(\sqrt[3]{15x-1})(\sqrt[3]{13x+1})(-4 \sqrt[3]{x}) \\ 15x-1 + 13x+1 - 64x & = -12 \sqrt[3]{195x^3 + 2x^2 - x} \\ -36x & = -12\sqrt[3]{195x^3 + 2x^2 - x} \\ 3x & = \sqrt[3]{195x^3 + 2x^2 - x} \\ 27x^3 & = 195x^3 + 2x^2 - x \\ \implies 168x^3+2x^2-x & = 0 \\ x(14x-1)(12x+1) & = 0 \\ \implies x & = 0, \frac 1{14}, -\frac 1{12} \end{aligned}

Therefore, the sum of roots = 0 + 1 14 1 12 = 1 84 = 0 +\frac 1{14} - \frac 1{12} = - \frac 1{84} a + b = 85 \implies a+b = 85 .


My solution

15 x 1 3 + 13 x + 1 3 = 4 x 3 Cubing both sides 15 x 1 + 3 ( 15 x 1 3 ) 2 13 x + 1 3 + 3 15 x 1 3 ( 13 x + 1 3 ) 2 + 13 x + 1 = 64 x 3 ( 15 x 1 ) ( 13 x + 1 ) 3 ( 15 x 1 3 + 13 x + 1 3 ) = 64 x 28 x 3 ( 15 x 1 ) ( 13 x + 1 ) 3 ( 4 x 3 ) = 36 x x ( 15 x 1 ) ( 13 x + 1 ) 3 = 3 x Cubing both sides and expand 195 x 3 + 2 x 2 x = 27 x 3 168 x 3 + 2 x 2 x = 0 x ( 14 x 1 ) ( 12 x + 1 ) = 0 x = 0 , 1 14 , 1 12 \begin{aligned} \sqrt[3]{15x-1} + \sqrt[3]{13x+1} & = 4 \sqrt[3]{x} \quad \quad \small \color{#3D99F6}{\text{Cubing both sides}} \\ 15x-1 + 3(\sqrt[3]{15x-1})^2\sqrt[3]{13x+1} + 3\sqrt[3]{15x-1}(\sqrt[3]{13x+1})^2 + 13x + 1 & = 64 x \\ 3\sqrt[3]{(15x-1)(13x+1)} (\sqrt[3]{15x-1} + \sqrt[3]{13x+1} ) & = 64x - 28x \\ 3\sqrt[3]{(15x-1)(13x+1)} (4 \sqrt[3]{x} ) & = 36x \\ \sqrt[3]{x(15x-1)(13x+1)} & = 3x \quad \quad \small \color{#3D99F6}{\text{Cubing both sides and expand}} \\ 195x^3 + 2x^2 - x & = 27x^3 \\ \implies 168x^3+2x^2-x & = 0 \\ x(14x-1)(12x+1) & = 0 \\ \implies x & = 0, \frac 1{14}, -\frac 1{12} \end{aligned}

Therefore, the sum of roots = 0 + 1 14 1 12 = 1 84 = 0 +\frac 1{14} - \frac 1{12} = - \frac 1{84} a + b = 85 \implies a+b = 85 .

Nice solution sir.

But just for sake of variety,here's my method:

A famous identity states that if a + b + c = 0 a+b+c=0 , then a 3 + b 3 + c 3 = 3 a b c a^{3}+b^{3}+c^{3}=3abc

Here a = ( 15 x 1 ) 1 / 3 a= (15x-1)^{1/3} , b = ( 13 x + 1 ) 1 / 3 b=(13x+1)^{1/3} and c = 4 ( x ) 1 / 3 c=-4(x)^{1/3} .

Thus using above identity , we can easily get our answer.

Harsh Shrivastava - 4 years, 11 months ago

Log in to reply

Can you show how a + b + c = 0 a+b+c=0 ?

Chew-Seong Cheong - 4 years, 11 months ago

Log in to reply

Its given: 15 x 1 3 a + 13 x + 1 3 b + ( 4 x 3 ) c = 0 \underbrace{\sqrt[3]{15x-1}}_a+\underbrace{\sqrt[3]{13x+1}}_b+\underbrace{(-4\sqrt[3]{x})}_c=0

Rishabh Jain - 4 years, 11 months ago

Log in to reply

@Rishabh Jain Stupid me.

Chew-Seong Cheong - 4 years, 11 months ago

Log in to reply

@Chew-Seong Cheong If you are stupid then we don't even exist... :-)

Rishabh Jain - 4 years, 11 months ago

Typo: c = 4 ( x ) 1 / 3 c=-4(x)^{1/3}

Rishabh Jain - 4 years, 11 months ago

@Rishabh Cool fixed.

Harsh Shrivastava - 4 years, 11 months ago

Can you show how a + b + c = 0 a+b+c=0 ?

Chew-Seong Cheong - 4 years, 11 months ago
Karim Fawaz
Jul 1, 2016

15 x 1 3 + 13 x + 1 3 = 4 x 3 \sqrt[3] {15x - 1} + \sqrt[3]{13x + 1} = 4\sqrt[3]{x}

14 x + ( x 1 ) 3 + 14 x ( x 1 ) 3 = 4 x 3 \sqrt[3] {14x + (x - 1)} + \sqrt[3]{14x - (x - 1)} = 4\sqrt[3]{x}

Cubing both sides we get:

14 x + ( x 1 ) + 14 x ( x 1 ) + 3 196 x 2 ( x 1 ) 2 3 ( 4 x 3 ) = 64 x {14x + (x - 1)} + {14x - (x - 1)} + 3\sqrt[3]{196x^{2} - (x - 1)^{2}} (4\sqrt[3]{x}) = 64x

28 x + 12 x ( 195 x 2 + 2 x 1 ) 3 = 64 x {28x + 12\sqrt[3]{x(195x^{2} + 2x - 1)} = 64x}

12 x ( 195 x 2 + 2 x 1 ) 3 = 36 x {12\sqrt[3]{x(195x^{2} + 2x - 1)} = 36x}

x ( 195 x 2 + 2 x 1 ) 3 = 3 x {\sqrt[3]{x(195x^{2} + 2x - 1)} = 3x}

Cubing both sides again we get:

x ( 195 x 2 + 2 x 1 ) = 27 x 3 {{x(195x^{2} + 2x - 1)} = 27x^{3}}

Since we have x as a common factor that means x = 0 is one of the solutions but since we are calculating the sum of all roots, we can just simplify by x all terms without affecting the answer.

195 x 2 + 2 x 1 = 27 x 2 {{195x^{2} + 2x - 1} = 27x^{2}}

168 x 2 + 2 x 1 = 0 {{168x^{2} + 2x - 1} = 0}

This equation has 2 real solutions since the discriminant is positive. The sum of the roots is:

2 168 = 1 84 \frac{-2}{168} = \frac{-1}{84}

a + b = 85 a+b = 85

Moderator note:

Good approach simplifying the expressions by cubing and squaring them.

15 x 1 3 \sqrt[3]{15x-1} + 13 x + 1 3 \sqrt[3]{13x+1} =4 x 3 \sqrt[3]{x}
Cubing both sides we get

15 x 1 15x-1 + 13 x + 1 13x+1 + 3( 15 x 1 3 ) 2 \sqrt[3]{15x-1})^2 13 x + 1 3 \sqrt[3]{13x+1} + 3 15 x 1 3 \sqrt[3]{15x-1} ( 13 x + 1 3 ) 2 \sqrt[3]{13x+1})^2 = 64 x 64x

3( 15 x 1 3 ) 2 \sqrt[3]{15x-1})^2 ( 13 x + 1 3 \sqrt[3]{13x+1} ) + 3 ( 15 x 1 3 (\sqrt[3]{15x-1} ) ( 13 x + 1 3 ) 2 \sqrt[3]{13x+1})^2 = 36 x 36x

( 15 x 1 3 ) 2 \sqrt[3]{15x-1})^2 ( 13 x + 1 3 \sqrt[3]{13x+1} ) + ( 15 x 1 3 (\sqrt[3]{15x-1} ) ( 13 x + 1 3 ) 2 \sqrt[3]{13x+1})^2 = 12 x 12x

Assume that ( 15 x 1 3 (\sqrt[3]{15x-1} ) = A A and ( 13 x + 1 3 \sqrt[3]{13x+1} ) = B B

We will get;

A 2 A^2 B B + A A B 2 B^2 = 3 7 \frac{3}{7} ( A 3 (A^3 + B 3 B^3 )

A A B B ( A (A + B B )= 3 7 \frac{3}{7} ( A (A + B B ) ( A 2 (A^2 - A A B B + B 2 B^2 )

A A B B = 3 7 \frac{3}{7} ( A 2 (A^2 - A A B B + B 2 B^2 )

Times 7 both sides

7 A A B B =3 ( A 2 (A^2 - A A B B + B 2 B^2 )

7 A A B B =3 A 2 A^2 -3 A A B B +3 B 2 B^2

3 A 2 A^2 -10 A A B B +3 B 2 B^2 =0

( 3 A (3A - B B ) ( A (A - 3 B 3B )=0

Therefore B B = 3 A 3A A A = 3 B 3B

Substitute; A A and B B back

3 ( 15 x 1 3 (\sqrt[3]{15x-1} ) = ( 13 x + 1 3 \sqrt[3]{13x+1} )

Cubing both sides

27( 15 x 1 {15x-1} )=( 13 x + 1 {13x+1} )

405 x 27 {405x-27} = 13 x + 1 {13x+1} Therefore;

x {x} = 1 14 \frac{1}{14}

and

( 15 x 1 3 (\sqrt[3]{15x-1} )=3( 13 x + 1 3 \sqrt[3]{13x+1} )

Cubing both sides

( 15 x 1 {15x-1} )=27( 13 x + 1 {13x+1} )

15 x 1 {15x-1} = 351 x + 27 {351x+27} Therefore;

x {x} = - 1 12 \frac{1}{12}

Therefore; sum of the roots;

- 1 12 \frac{1}{12} + 1 14 \frac{1}{14} = - 1 84 \frac{1}{84}

Therefore the answer is 85

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...