Cubic Polynomial

Algebra Level 3

A cubic polynomial p(x) is such that p(1)=1 , p(2)=2 , p(3)=3 , p(4)=5. find the value of P(6) ????


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Deepanshu Gupta
Aug 20, 2014

let f ( x ) = p ( x ) x f(x)=p(x) - x .

where f(x) has roots 1,2,3

f ( x ) = p ( x ) x = a ( x 1 ) ( x 2 ) ( x 3 ) f(x)=p(x) - x = a(x-1)(x-2)(x-3) .

p ( 4 ) = 5 p(4)=5 .

So

a = 1 / 6 a=1/6 .

p ( 6 ) = 16 p(6)=16 .

I used the method of differences .

mathh mathh - 6 years, 9 months ago

Log in to reply

I used the method, but got some problem. Can you please post the solution?

Swapnil Das - 5 years, 11 months ago

Log in to reply

:

x p ( x ) D 1 D 2 D 3 1 1 1 0 1 2 2 1 1 3 3 2 4 5 5 6 \begin{array}{l|c|r}x& p(x)& D_1& D_2& D_3\\\hline 1& 1& 1& 0& 1\\\hline 2& 2& 1& 1\\\hline 3& 3& 2\\\hline 4& 5\\\hline 5\\\hline 6\end{array}

Since p ( x ) p(x) is a cubic polynomial, D 3 D_3 is constant.

x p ( x ) D 1 D 2 D 3 1 1 1 0 1 2 2 1 1 1 3 3 2 1 4 5 5 6 \begin{array}{l|c|r}x& p(x)& D_1& D_2& D_3\\\hline 1& 1& 1& 0& 1\\\hline 2& 2& 1& 1& 1\\\hline 3& 3& 2& & 1\\\hline 4& 5\\\hline 5\\\hline 6\end{array}

Knowing this, you find the other differences, and eventually find p ( 5 ) , p ( 6 ) p(5),p(6) .

x p ( x ) D 1 D 2 D 3 1 1 1 0 1 2 2 1 1 1 3 3 2 2 1 4 5 3 5 6 \begin{array}{l|c|r}x& p(x)& D_1& D_2& D_3\\\hline 1& 1& 1& 0& 1\\\hline 2& 2& 1& 1& 1\\\hline 3& 3& 2& 2& 1\\\hline 4& 5& & 3\\\hline 5\\\hline 6\end{array}

x p ( x ) D 1 D 2 D 3 1 1 1 0 1 2 2 1 1 1 3 3 2 2 1 4 5 4 3 5 7 6 \begin{array}{l|c|r}x& p(x)& D_1& D_2& D_3\\\hline 1& 1& 1& 0& 1\\\hline 2& 2& 1& 1& 1\\\hline 3& 3& 2& 2& 1\\\hline 4& 5& 4& 3\\\hline 5& & 7\\\hline 6\end{array}

x p ( x ) D 1 D 2 D 3 1 1 1 0 1 2 2 1 1 1 3 3 2 2 1 4 5 4 3 5 9 7 6 16 \begin{array}{l|c|r}x& p(x)& D_1& D_2& D_3\\\hline 1& 1& 1& 0& 1\\\hline 2& 2& 1& 1& 1\\\hline 3& 3& 2& 2& 1\\\hline 4& 5& 4& 3\\\hline 5& 9& 7\\\hline 6& 16\end{array}

mathh mathh - 5 years, 11 months ago

Log in to reply

@Mathh Mathh I am extremely indebted for your kind help!

Swapnil Das - 5 years, 11 months ago
Sai Ram
Aug 18, 2015

Let the polynomial be a x 3 + b x 2 + c x + d . ax^3+bx^2+cx+d.

Now,

p ( x ) = a x 3 + b x 2 + c x + d . p(x)=ax^3+bx^2+cx+d.

It is given that p ( 1 ) = 1 , p ( 2 ) = 2 , p ( 3 ) = 3 , p ( 4 ) = 5. p(1)=1 , p(2)=2 ,p(3)=3,p(4)=5.

p ( 1 ) = a + b + c + d = 1..................... 1 p(1)=a+b+c+d =1 .....................\dots \boxed{1}

p ( 2 ) = 8 a + 4 b + 2 c + d = 2.................. 2 p(2)=8a+4b+2c+d =2 ..................\dots \boxed{2}

p ( 3 ) = 27 a + 9 b + 3 c + d = 3................. 3 p(3)=27a+9b+3c+d = 3 .................\dots \boxed{3}

p ( 4 ) = 64 a + 16 b + 4 c + d = 4................. 4 p(4)=64a+16b+4c+d=4 .................\dots \boxed{4}

Solving these four equations ,we get

a = 1 6 a=\dfrac{1}{6}

b = 1 b=-1

c = 17 6 c=\dfrac{17}{6}

d = 1. d=-1.

Now,the polynomial becomes

x 3 6 x 2 + 17 x 6 1. \dfrac{x^3}{6}-x^2+\dfrac{17x}{6}-1.

Substituting 6 6 we get 16. 16.

Divyansh Saxena
Oct 8, 2014

let a cubical polynomial equation be

P(x)= ax^{3} + bx^{2} + cx + d . So now,

P(1)=a+b+c+d=1

p(2)=8a+4b+2c+d=2

P(3)=27a+9b+3c+d=3

P(4)=64a+16b+4c+d=5

use CRAMER'S RULE to solve these equations and get the values of (a,b,c,d).

you will get the values as a=0.1666666 , b=-1 , c=2.8333333 , d=-1

so now put these values in above equation,

P(x)=0.166666x^{3} - x^{2} + 2.833333x - 1

put x=6

you will get P(6)=15.98

approx. (16).

That's exactly how i did it!

Stewart Feasby - 6 years, 8 months ago

Log in to reply

nice try. gr8 explanation

Piyush Joshi - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...