Cubic Ratios

Algebra Level 3

If x = p 3 + p 2 3 + p x = \sqrt[3]{p} + \sqrt[3]{p^2} + p is a root of x 3 + a x 2 + b x + c = 0 x^3 + ax^2 + bx + c = 0 , where p p is a prime number and a a , b b , and c c are integers, and if c b b a = 100 \cfrac{c}{b} - \cfrac{b}{a} = 100 , find the value of a + b + c + p a + b + c + p .

Inspiration


The answer is -3329852.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
Nov 25, 2020

Note that we don't need to know that p p is a prime number to solve this question.

We have x p = p 1 / 3 + p 2 / 3 x - p = p^{1/3} + p^{2/3} , then cubing both sides gives ( x p ) 3 = p + p 2 + 3 p ( p 1 / 3 + p 2 / 3 = x p ) x 3 + x 2 ( 3 p ) + x ( 3 p 2 3 p ) + ( p 3 + 2 p 2 p ) = 0. (x - p)^3 = p + p^2 + 3p (\, \underbrace{p^{1/3} + p^{2/3}}_{=\, x-p}\, ) \quad \implies \quad x^3 + x^2 (-3p) + x(3p^2 - 3p) + (-p^3 + 2p^2 - p)=0 . Thus, ( a , b , c ) = ( 3 p , 3 p 2 3 p , p 3 + 2 p 2 p ) p 3 + 2 p 2 p 3 p 2 3 p 3 p 2 3 p 3 p = 100 (a,b,c) = (-3p, 3p^2 - 3p, -p^3 + 2p^2 - p) \quad \implies \quad \dfrac{-p^3+2p^2 - p}{3p^2 - 3p} - \dfrac{3p^2 - 3p}{-3p} = 100 Simplifying the equation above gives p = 151 ( a , b , c ) = ( 453 , 67950 , 3397500 ) p = 151 \quad\implies \quad (a,b,c) = (-453 , 67950, - 3397500) The answer is ( 453 ) + 67950 + ( 3397500 ) + 151 = 3329852 . (-453) + 67950 + (- 3397500) + 151 = \boxed{-3329852} .

Great job, you found a shorter way than me!

You may not need to know that p p is a prime number, but you do need to know that p p is not a cube, otherwise there are multiple solutions to the cubic. For example, if p = 8 p = 8 , then x = 14 x = 14 , and that is a root of x 3 + 2 x 2 32 x 2688 = 0 x^3 + 2x^2 - 32x - 2688 = 0 , where c b b a = 2688 32 32 2 = 100 \cfrac{c}{b} - \cfrac{b}{a} = \cfrac{-2688}{-32} - \cfrac{-32}{2} = 100 .

David Vreken - 6 months, 2 weeks ago

Log in to reply

Well said. \quad

Pi Han Goh - 6 months, 2 weeks ago

Sir, i have solved the same way as of pi han goh . What was your method

Krity Kamal - 6 months, 1 week ago

Log in to reply

I just posted my method for you to look at.

David Vreken - 6 months, 1 week ago

Log in to reply

@David Vreken thanks sir

Krity Kamal - 6 months ago

I have solved in same way.

Krity Kamal - 6 months, 1 week ago
David Vreken
Dec 7, 2020

Let x = p 3 + p 2 3 + p x = \sqrt[3]{p} + \sqrt[3]{p^2} + p .

Then x 3 + a x 2 + b x + c x^3 + ax^2 + bx + c

= ( p 3 + p 2 3 + p ) 3 + a ( p 3 + p 2 3 + p ) 2 + b ( p 3 + p 2 3 + p ) + c = (\sqrt[3]{p} + \sqrt[3]{p^2} + p)^3 + a(\sqrt[3]{p} + \sqrt[3]{p^2} + p)^2 + b(\sqrt[3]{p} + \sqrt[3]{p^2} + p) + c

= ( 6 p 2 + 3 p ) p 3 + ( 3 p 2 + 6 p ) p 2 3 + p 3 + 7 p 2 + p + 3 a p p 3 + ( 2 a p + a ) p 2 3 + a p 2 + 2 a p + b p 3 + b p 2 3 + b p + c = (6p^2 + 3p)\sqrt[3]{p} + (3p^2 + 6p)\sqrt[3]{p^2} + p^3 + 7p^2 + p + 3ap\sqrt[3]{p} + (2ap + a)\sqrt[3]{p^2} + ap^2 + 2ap + b\sqrt[3]{p} + b\sqrt[3]{p^2} + bp + c

= ( 6 p 2 + 3 p + 3 a p + b ) p 3 + ( 3 p 2 + 6 p + 2 a p + a + b ) p 2 3 + p 3 + 7 p 2 + p + a p 2 + 2 a p + b p + c = (6p^2 + 3p + 3ap + b)\sqrt[3]{p} + (3p^2 + 6p + 2ap + a + b)\sqrt[3]{p^2} + p^3 + 7p^2 + p + ap^2 + 2ap + bp + c

For the p 3 \sqrt[3]{p} terms to cancel out, 6 p 2 + 3 p + 3 a p + b = 0 6p^2 + 3p + 3ap + b = 0 , and for the p 2 3 \sqrt[3]{p^2} to cancel out, 3 p 2 + 6 p + 2 a p + a + b = 0 3p^2 + 6p + 2ap + a + b = 0 , and these two equations solve to a = 3 p a = -3p and b = 3 p ( p 1 ) b = 3p(p - 1) for p 1 p \neq 1 .

Substituting a = 3 p a = -3p and b = 3 p ( p 1 ) b = 3p(p - 1) back into the cubic equation, c c solves to c = p ( p 1 ) 2 c = -p(p - 1)^2 .

If c b b a = 100 \cfrac{c}{b} - \cfrac{b}{a} = 100 , then p ( p 1 ) 2 3 p ( p 1 ) 3 p ( p 1 ) 3 p = 100 \cfrac{-p(p - 1)^2}{3p(p - 1)} - \cfrac{3p(p - 1)}{-3p} = 100 , which solves to p = 151 p = 151 .

If p = 151 p = 151 , then a = 3 p = 453 a = -3p = -453 , b = 3 p ( p 1 ) = 67950 b = 3p(p - 1) = 67950 , c = p ( p 1 ) 2 = 3397500 c = -p(p - 1)^2 = -3397500 , and a + b + c + p = 3329852 a + b + c + p = \boxed{-3329852} .

Nice method.

Krity Kamal - 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...