Decent Integral (2)

Calculus Level 3

Evaluate 0 1 sin 1 ( x ) x d x \displaystyle{\int_{0}^{1}\frac{\sin^{-1}(x)}{x}\,\mathrm{d}x} . If the answer can be expressed as π a ln ( b ) c \dfrac{\pi^a\ln(b)}{c} , where a a is a positive integer and b b and c c are positive primes, write your answer as a + b + c a+b+c .

Challenge : Solve the problem by hand.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 24, 2017

I = 0 1 sin 1 x x d x Let sin θ = x , cos θ d θ = d x = 0 π 2 θ cot θ d θ By integration by parts = θ ln ( sin θ ) 0 π 2 0 π 2 ln ( sin θ ) d θ = π 2 0 ln ( sin θ ) d θ By a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 π 2 0 ( ln ( sin θ ) + ln ( cos θ ) ) d θ = 1 2 π 2 0 ln ( sin θ cos θ ) d θ = 1 2 π 2 0 ln ( sin 2 θ 2 ) d θ = 1 2 π 2 0 ( ln ( sin 2 θ ) ln 2 ) d θ Let ϕ = 2 θ , d ϕ = 2 d θ = 1 4 π 0 ln ( sin ϕ ) d ϕ + 1 2 0 π 2 ln 2 d θ Note that ln ( sin x ) is symmetrical at π 2 = 1 4 ( 2 I ) + π 4 ln 2 = π ln 2 2 \begin{aligned} I & = \int_0^1 \frac {\sin^{-1}x}x dx & \small \color{#3D99F6} \text{Let }\sin \theta = x, \ \cos \theta \ d\theta = dx \\ & = \int_0^\frac \pi 2 \theta \cot \theta \ d \theta & \small \color{#3D99F6} \text{By integration by parts} \\ & = \theta \ln (\sin \theta) \bigg|_0^\frac \pi 2 - \int_0^ \frac \pi 2 \ln (\sin \theta) \ d\theta \\ & = \int^0_\frac \pi 2 \ln (\sin \theta) \ d\theta & \small \color{#3D99F6} \text{By }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int^0_\frac \pi 2 \big(\ln (\sin \theta) + \ln(\cos \theta)\big) \ d\theta \\ & = \frac 12 \int^0_\frac \pi 2 \ln (\sin \theta \cos \theta) \ d\theta \\ & = \frac 12 \int^0_\frac \pi 2 \ln \left(\frac {\sin 2 \theta}2\right) \ d\theta \\ & = \frac 12 \int^0_\frac \pi 2 \big(\ln (\sin {\color{#3D99F6}2 \theta}) - \ln 2 \big) \ d\theta & \small \color{#3D99F6} \text{Let }\phi = 2\theta, \ d\phi = 2 \ d\theta \\ & = \frac 1{\color{#3D99F6}4} {\color{#D61F06}\int^0_{\color{#3D99F6}\pi} \ln (\sin {\color{#3D99F6}\phi}) \ d{\color{#3D99F6}\phi}} + \frac 12 \int_0^\frac \pi 2 \ln 2 \ d\theta & \small \color{#D61F06} \text{Note that } \ln(\sin x) \text{ is symmetrical at }\frac \pi 2 \\ & = \frac 14 {\color{#D61F06}(2I)} + \frac \pi 4 \ln 2 \\ & = \frac {\pi \ln 2}2 \end{aligned}

a + b + c = 1 + 2 + 2 = 5 \implies a+b+c = 1+2+2 = \boxed{5}

Very nicely done, sir. Substituting the trigonometric part so that applying by parts becomes much easier. :)

Swagat Panda - 3 years, 10 months ago

Log in to reply

Glad that you like it.

Chew-Seong Cheong - 3 years, 10 months ago

Log in to reply

Sir,I like both your approach to solutions as well as the way you arrange them in proper format in latex. It's really unique and it has become like a trademark to all of your solutions.

Swagat Panda - 3 years, 10 months ago

Log in to reply

@Swagat Panda Thanks again.

Chew-Seong Cheong - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...