Decimate the decimals

Algebra Level 4

Let x , y , z x,y,z be positive numbers such that x + y + z = 2 x+y+z=2 and x y + y z + z x = 1 xy+yz+zx=1 . Given that x 20.17 + y 20.17 + z 20.17 \large x^{20.17}+y^{20.17}+z^{20.17} achieves its maximum value when ( x , y , z ) = ( X , Y , Z ) (x,y,z)=(X,Y,Z) , and that X Y Z = a b , XYZ=\frac{a}{b}, where a a and b b are coprime positive integers, find a + b a+b .


The answer is 31.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Julian Poon
Jul 4, 2017

I'm typing this out at 3:11 AM cause I can't sleep. If there;s any errors please just tell:

Lemma: z n + y n 2 2 2 n ( y + z ) 2 n z^n+y^n\le \frac{2}{2^{2n}}\left(\sqrt{y}+\sqrt{z}\right)^{2n} for all real n n Proof: Since we need to prove for all real n n , it indicates that we should use a continuous method, namely calculus z n + y n = ( y + z ) 2 n 1 + ( z y ) n ( 1 + z y ) 2 n z^n + y^n = \left(\sqrt{y}+\sqrt{z}\right)^{2n}\cdot \frac{1+\left(\frac{z}{y}\right)^n}{\left(1+\sqrt{\frac{z}{y}}\right)^{2n}} Using calculus, it can be found that 1 + k n ( 1 + k ) 2 n = 1 + ( z y ) n ( 1 + z y ) 2 n 2 2 2 n \frac{1+k^n}{\left(1+\sqrt{k}\right)^{2n}}=\frac{1+\left(\frac{z}{y}\right)^n}{\left(1+\sqrt{\frac{z}{y}}\right)^{2n}}\le \frac{2}{2^{2n}} The inequality follows from here.


First thing to notice is that x 2 + y 2 + z 2 = 2 ( x y + y z + z x ) = 2 x^2 + y^2 + z^2 = 2(xy+yz+zx) = 2 .

x 2 + y 2 + z 2 2 ( x y + y z + z x ) = ( x + y + z ) ( x + y + z ) ( x y + z ) ( x + y z ) = 0 x^2 + y^2 + z^2 - 2(xy + yz + zx) = (\sqrt{x} + \sqrt{y} + \sqrt{z})(-\sqrt{x} + \sqrt{y} + \sqrt{z})(\sqrt{x} - \sqrt{y} + \sqrt{z})(\sqrt{x} + \sqrt{y} - \sqrt{z})=0

Without loss of generality, we can assume x > y z x>y \ge z . Hence x = y + z \sqrt{x} = \sqrt{y} + \sqrt{z}

x n + y n + z n = ( y + z ) 2 n + y n + z n x^n + y^n + z^n = \left( \sqrt{y} + \sqrt{z} \right)^{2n} + y^n + z^n

Now since z n + y n 2 2 2 n ( y + z ) 2 n z^n+y^n\le \frac{2}{2^{2n}}\left(\sqrt{y}+\sqrt{z}\right)^{2n}

( y + z ) 2 n + y n + z n ( 1 + 2 2 2 n ) ( y + z ) 2 n = ( 1 + 2 2 2 n ) x n \left( \sqrt{y} + \sqrt{z} \right)^{2n} + y^n + z^n \le \left(1+\frac{2}{2^{2n}}\right)\left(\sqrt{y}+\sqrt{z}\right)^{2n}=\left(1+\frac{2}{2^{2n}}\right)\cdot x^n

Now since z + y = 2 x , y z = 1 z x x y = 1 x ( 2 x ) z+y=2-x,\ yz=1-zx-xy=1-x(2-x) and ( y + z ) 2 4 y z \left(y+z\right)^2\ge 4yz through AM-GM, max x = 4 3 \max_x=\frac{4}{3} .

Hence x n + y n + z n ( 1 + 2 2 2 n ) x n ( 1 + 2 2 2 n ) ( 4 3 ) n x^n + y^n + z^n \le \left(1+\frac{2}{2^{2n}}\right)\cdot x^n \le \left(1+\frac{2}{2^{2n}}\right)\cdot \left(\frac{4}{3}\right)^n With equality achieved when 4 y = 4 z = x = 4 3 4y=4z=x=\frac{4}{3}

That lemma is good :) Remember to sleep well anyways :)

Steven Jim - 3 years, 11 months ago

I don't know enough to decide if this is a coincidence or not, but actually, 4 27 \dfrac{4}{27} is the maximum of x y z xyz . Thought this would be a good thing to reflect on. Nice solution, by the way!

Boi (보이) - 3 years, 11 months ago

Log in to reply

Well... It's not a coincidence. Still asking why :)

Steven Jim - 3 years, 11 months ago

Log in to reply

I got it while I was spacing out.

Let the triplet ( x , y , z ) (x,~y,~z) make x 20.17 + y 20.17 + z 20.17 x^{20.17}+y^{20.17}+z^{20.17} maximum and the triplet would make x 3 + y 3 + z 3 x^3+y^3+z^3 maximum, according to the solution Julian posted.

x 3 + y 3 + z 3 = ( x + y + z ) ( x 2 + y 2 + z 2 x y y z z x ) + 3 x y z = 2 + 3 x y z x^3+y^3+z^3=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)+3xyz=2+3xyz

And x 3 + y 3 + z 3 x^3+y^3+z^3 would reach its maximum when x y z xyz is maximum.

Therefore x 20.17 + y 20.17 + z 20.17 x^{20.17}+y^{20.17}+z^{20.17} would reach its maximum too, when x y z xyz is maximum.

Boi (보이) - 3 years, 11 months ago

Log in to reply

@Boi (보이) Great idea! So now we can generalize this problem!

Steven Jim - 3 years, 11 months ago

@Boi (보이) Anyways, how would you know that x 20.17 + y 20.17 + z 20.17 x^{20.17}+y^{20.17}+z^{20.17} will achieve the maximum when x 3 + y 3 + z 3 x^3+y^3+z^3 achieves it? It is true in most cases, yet all.

Steven Jim - 3 years, 11 months ago

Log in to reply

@Steven Jim Well, in this specific case, if x 20.17 + y 20.17 + z 20.17 x^{20.17}+y^{20.17}+z^{20.17} is maximum, the triplet x , y , z x,~y,~z would make every x n + y n + z n x^n+y^n+z^n as large as possible.

So, x 3 + y 3 + z 3 x^3+y^3+z^3 would me maximum as well.

Boi (보이) - 3 years, 11 months ago

Log in to reply

@Boi (보이) That's what I've been thinking of. It's not somewhat provable atm, so I'm stuck. I do think though that you're right, though I'm not sure if n < 1 n<1 .

Steven Jim - 3 years, 11 months ago

@Boi (보이) Oh wow! I was thinking of Newton's sum, by setting x=X^1000, y = Y^1000, z=Z^1000. And I got plenty of huge expressions to work with. =(

Pi Han Goh - 3 years, 11 months ago

Log in to reply

@Pi Han Goh Oops, that sounds like a pain in the arse.

Boi (보이) - 3 years, 11 months ago

Oh also @Julian Poon , I will do what you asked.

It's not x > y > z x>y>z , it's x > y z x>y\geq z .

Also, x n + y n + z n = ( y + z ) 2 n + y n + z n x^n + y^n + z^n = \left( \sqrt{y} + \sqrt{z} \right)^{\color{#D61F06}{2n}} + y^n + z^n , and

( y + z ) 2 n + y n + z n ( 1 + 2 2 2 n ) ( y + z ) 2 n = ( 1 + 2 2 2 n ) x n \left( \sqrt{y} + \sqrt{z} \right)^{\color{#D61F06}{2n}} + y^n + z^n \le \left(1+\frac{2}{2^{2n}}\right)\left(\sqrt{y}+\sqrt{z}\right)^{2n}=\left(1+\frac{2}{2^{2n}}\right)\cdot x^n

....sleep well and regularly , dude =_=

Boi (보이) - 3 years, 11 months ago

Log in to reply

Well I'm back after a week of 0 internet activity, and I've edited it :)

Julian Poon - 3 years, 11 months ago

Log in to reply

Neato! Welcome back! :D

Boi (보이) - 3 years, 11 months ago

He's been mad lately revising for his test :)

Steven Jim - 3 years, 11 months ago

Log in to reply

Ooh, poor guy.

I can relate. It's... painful.

Boi (보이) - 3 years, 11 months ago

Superb! This is an awesome problem :)

Zach Abueg - 3 years, 11 months ago

Alternative solution

ritik agrawal - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...