Definite Differential 1

Calculus Level 4

Find the value of d d x [ cos 1 ( 2 x 1 + x 2 ) ] x = 1 4 \large\dfrac{\mathrm{d}}{\mathrm{d}x}\left[\cos^{-1}\left(\dfrac{2x}{1+x^2}\right)\right]_{ x = \frac{1}{4}}


The answer is -1.882352941.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Rohit Ner
May 22, 2016

cos 1 ( 2 x 1 + x 2 ) = π 2 sin 1 ( 2 x 1 + x 2 ) = π 2 2 tan 1 x d d x [ π 2 2 tan 1 x ] = 2 1 + x 2 d d x [ π 2 2 tan 1 x ] x = 1 4 = 32 17 \begin{aligned} \cos^{-1}\left(\dfrac{2x}{1+x^2}\right) &= \dfrac{\pi}{2} -\sin^{-1}\left(\dfrac{2x}{1+x^2}\right)\\&=\dfrac{\pi}{2}-2\tan^{-1}x\\\dfrac{d}{dx}\left[ \dfrac{\pi}{2}-2\tan^{-1}x\right] &= -\dfrac{2}{1+{x}^2}\\\dfrac{\mathrm{d}}{\mathrm{d}x}\left[ \dfrac{\pi}{2}-2\tan^{-1}x\right]_{ x = \dfrac{1}{4}}&\large\color{#3D99F6}{=\boxed{-\dfrac{32}{17}}}\end{aligned}

This is the approach I wanted. Nice solution!

Kishore S. Shenoy - 5 years ago
Chew-Seong Cheong
May 24, 2016

Let y = cos 1 ( 2 x 1 + x 2 ) y = \cos^{-1} \left(\dfrac{2x}{1+x^2} \right) . d d x cos 1 ( 2 x 1 + x 2 ) = d y d x \implies \dfrac{d}{dx} \cos^{-1} \left(\dfrac{2x}{1+x^2} \right) = \dfrac{dy}{dx} and:

cos y = 2 x 1 + x 2 Differentiate both side. sin y d y d x x = 1 4 = ( 2 1 + x 2 4 x 2 ( 1 + x 2 ) 2 ) x = 1 4 cos y x = 1 4 = 2 ( 1 4 ) 1 + ( 1 4 ) 2 = 8 17 sin y = 15 17 d y d x x = 1 4 = 17 15 ( 32 17 64 289 ) = 32 17 1.882352941 \begin{aligned} \implies \cos y & = \frac{2x}{1+x^2} \quad \quad \small \color{#3D99F6}{\text{Differentiate both side.}} \\ - \color{#3D99F6}{\sin y} \ \frac{dy}{dx} \ \bigg|_{x=\frac{1}{4}} & = \left( \frac{2}{1+x^2} - \frac{4x^2}{(1+x^2)^2} \right) \bigg|_{x=\frac{1}{4}} \quad \quad \small \color{#3D99F6}{\cos y \ \bigg|_{x=\frac{1}{4}} = \frac{2\left(\frac{1}{4}\right)}{1+\left(\frac{1}{4}\right)^2} = \frac{8}{17} \implies \sin y = \frac{15}{17}} \\ \implies \frac{dy}{dx} \ \bigg|_{x=\frac{1}{4}} & = -\color{#3D99F6}{\frac{17}{15}} \left( \frac{32}{17} - \frac{64}{289} \right) = -\frac{32}{17} \approx \boxed{-1.882352941} \end{aligned}

Hobart Pao
May 25, 2016

Using:

d d x ( arccos x ) = 1 1 x 2 \dfrac{d}{dx} \left( \arccos x \right) = \dfrac{-1}{\sqrt{1-x^2}}

d d x ( f ( g ( x ) ) ) = f ( g ( x ) ) g ( x ) \dfrac{d}{dx} \left( f(g(x)) \right) = f'(g(x)) g'(x)

d d x ( f ( x ) g ( x ) ) = f ( x ) g ( x ) g ( x ) f ( x ) [ g ( x ) ] 2 \dfrac{d}{dx} \left( \dfrac{f(x)}{g(x)}\right) = \dfrac{f'(x)g(x) - g'(x)f(x)}{[g(x)]^2}

d d x ( arccos ( 2 x 1 + x 2 ) ) = 1 1 ( 2 x 1 + x 2 ) 2 [ 2 ( 1 + x 2 ) ( 2 x ) 2 ( 1 + x 2 ) 2 ] \dfrac{d}{dx} \left( \arccos \left( \dfrac{2x}{1+x^2}\right) \right) = \dfrac{-1}{\sqrt{1- \left( \dfrac{2x}{1+x^2} \right)^2}} \cdot \left[ \dfrac{2(1+x^2) - (2x)^2}{(1+x^2)^2}\right]

Upon plugging in x = 1 4 x = \dfrac{1}{4} , I got 32 17 1.882 -\dfrac{32}{17} \approx \boxed{-1.882} .

A classical approach. Look other solutions for a bit easier approach. Nice! &_I don't know why I put this question. It's very simple for me now 😃

Kishore S. Shenoy - 5 years ago

Log in to reply

It's fine that you put this question. Being a calculus tutor, I used this problem on my final exam. Thanks!

Hobart Pao - 5 years ago

Log in to reply

Thanks and welcome! You are a Calculus tutor, OMG, I thought you were only a student. :D P.S. I am a student

Kishore S. Shenoy - 5 years ago

Log in to reply

@Kishore S. Shenoy I'm a student too but I tutor the subject for fun. I know the basics of single variable and some special functions and I have yet to fully master multivariable.

Hobart Pao - 5 years ago
Ayush Garg
Mar 21, 2016

this problem is too highly rated..

Krishna Shankar
Oct 3, 2015

Put x= tan@ it reduces to ( -2 / 1 + x^2) after differentiating apply x=1/4 will lead to -1.88.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...