Déjà vu!

Geometry Level 5

a 2 cot 9 + b 2 cot 2 7 + c 2 cot 6 3 + d 2 cot 8 1 a^2 \cot 9^\circ + b^2 \cot 27^\circ + c^2 \cot 63^\circ + d^2 \cot 81^\circ

Let a , b , c a,b,c and d d be real numbers satisfying a + b + c + d = 5 a+b+c+d=5 . If the minimum value of the expression above is equal to x y \dfrac{\sqrt x}y , where x x and y y are coprime positive integers, find x + y x+y .


The answer is 129.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Manuel Kahayon
May 17, 2016

By Cauchy-Schwarz inequality,

( a 2 cot 9 + b 2 cot 2 7 + c 2 cot 6 3 + d 2 cot 8 1 ) ( 1 cot 9 + 1 cot 2 7 + 1 cot 6 3 + 1 cot 8 1 ) ( a + b + c + d ) 2 = 25 (a^2 \cot 9^\circ + b^2 \cot 27^\circ + c^2 \cot 63^\circ + d^2 \cot 81^\circ)(\frac{1}{\cot 9^\circ}+\frac{1}{\cot 27^\circ}+\frac{1}{\cot 63^\circ}+\frac{1}{\cot 81^\circ}) \geq (a+b+c+d)^2 = 25 (Since a + b + c + d = 5 a+b+c+d = 5

Now, let ( a 2 cot 9 + b 2 cot 2 7 + c 2 cot 6 3 + d 2 cot 8 1 ) = N (a^2 \cot 9^\circ + b^2 \cot 27^\circ + c^2 \cot 63^\circ + d^2 \cot 81^\circ) = N Then, dividing both sides by 1 cot 9 + 1 cot 2 7 + 1 cot 6 3 + 1 cot 8 1 \frac{1}{\cot 9^\circ}+\frac{1}{\cot 27^\circ}+\frac{1}{\cot 63^\circ}+\frac{1}{\cot 81^\circ} ,

N 25 1 cot 9 + 1 cot 2 7 + 1 cot 6 3 + 1 cot 8 1 = 25 tan 9 + tan 8 1 + tan 2 7 + tan 6 3 \large N \geq \frac{25}{\frac{1}{\cot 9^\circ}+\frac{1}{\cot 27^\circ}+\frac{1}{\cot 63^\circ}+\frac{1}{\cot 81^\circ}}= \frac{25}{\tan 9^\circ +\tan 81^\circ +\tan 27^\circ +\tan 63^\circ}

Now, by the identity tan x + tan ( 90 x ) = 2 csc ( 2 x ) \tan x^\circ + \tan(90-x)^\circ = 2 \csc (2x) , we see that tan 9 + tan 8 1 + tan 2 7 + tan 6 3 = 2 ( csc 1 8 + csc 5 4 ) = 4 5 \tan 9^\circ +\tan 81^\circ +\tan 27^\circ +\tan 63^\circ = 2(\csc 18^\circ + \csc 54 ^\circ) = 4 \sqrt{5}

Therefore, N 25 tan 9 + tan 8 1 + tan 2 7 + tan 6 3 = 25 4 5 = 125 4 \large N \geq \frac{25}{\tan 9^\circ +\tan 81^\circ +\tan 27^\circ +\tan 63^\circ} = \frac{25}{4 \sqrt{5}} = \boxed{\frac{\sqrt{125}}{4}}

Our answer is 125 + 4 = 129 125+4 = \boxed {129}

That is a great way of answering Mr. Kahayon

Damn Daniel - 5 years ago

Log in to reply

Thank you very much :)

Manuel Kahayon - 5 years ago

LAKAZ NI OSBERT!!!

Dione Bernn Yapoyco - 5 years ago

Log in to reply

Hindiiii poooooo

Manuel Kahayon - 5 years ago

Log in to reply

Out of curiosity,what is the meaning of 'hindi' here.Do you mean Hindi(lang.)?

Rohit Udaiwal - 5 years ago

Log in to reply

@Rohit Udaiwal No... Hindi means no in filipino language..

Manuel Kahayon - 5 years ago

Log in to reply

@Manuel Kahayon O H K ! \mathbf{OHK}!

Rohit Udaiwal - 5 years ago

How did you go from 2(csc 18 + csc 54) to 4sqrt5?

Yasin Tarabar - 5 years ago

Log in to reply

c s c 18 = 1 s i n 18 = 4 5 1 = 5 + 1 csc 18 = \frac{1}{sin18} = \frac{4}{\sqrt{5}-1} = \sqrt5+1 (A less well-known special angle)

Similarly, c s c 54 = 1 s i n 54 = 4 5 + 1 = 5 1 csc 54 = \frac{1}{sin54} = \frac{4}{\sqrt{5}+1} = \sqrt5-1 (Another less well-known special angle)

So, 2 ( c s c 18 + c s c 54 = 2 ( 5 1 + 5 + 1 ) = 4 5 2(csc 18+csc54 = 2(\sqrt{5}-1+\sqrt{5}+1) = 4\sqrt{5}

Manuel Kahayon - 5 years ago
Rachit Shukla
May 14, 2016

Let us take a general case where x + y = k x+y=k and p = a x 2 + b y 2 p=ax^{2}+by^{2} which is to be minimised.

\Rightarrow p = ( a + b ) x 2 ( 2 k b ) x + b k 2 p=(a+b)x^{2}-(2kb)x+bk^{2} or p = ( a + b ) y 2 ( 2 k b ) y + b k 2 p=(a+b)y^{2}-(2kb)y+bk^{2}

So, x m i n = b a + b k x_{min}=\frac{b}{a+b}k and y m i n = a a + b k y_{min}=\frac{a}{a+b}k

\therefore p m i n = a b a + b k 2 p_{min}=\frac{ab}{a+b}k^{2} - - - ( 1 ) (1)

So, p = a 2 cot 9 + b 2 cot 2 7 + c 2 cot 6 3 + d 2 cot 8 1 p=a^2 \cot 9^\circ + b^2 \cot 27^\circ + c^2 \cot 63^\circ + d^2 \cot 81^\circ can be minimised as follows:

p 1 = a 2 cot 9 + d 2 cot 8 1 p_1=a^2 \cot 9^\circ+ d^2 \cot 81^\circ

p 2 = b 2 cot 2 7 + c 2 cot 6 3 p_2=b^2 \cot 27^\circ + c^2 \cot 63^\circ

p m i n = p 1 m i n + p 2 m i n p_{min}=p_{1min}+p_{2min} where p 1 = s i n 1 8 2 k 1 2 p_1=\frac{sin18^{\circ}}{2}k_1^{2} ; p 2 = c o s 3 6 2 k 2 2 p_2=\frac{cos36^{\circ}}{2}k_2^{2} , a + d = k 1 a+d=k_1 ; b + c = k 2 b+c=k_2 and k 1 + k 2 = 5 k_1+k_2=5

\therefore p m i n = 125 4 p_{min}=\frac{\sqrt{125}}{4} (using ( 1 ) (1) )

Nice problem. From where do you got this

Aakash Khandelwal - 5 years, 1 month ago

Log in to reply

It was given to me by my maths teacher.

PS- Not school teacher :P

Rachit Shukla - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...