Differentiation or inequality?

Algebra Level 5

Given that x x and y y are positive real such that x + y = 1 x+y=1 , find the value of k k such that the maximum value of x 4 y + x y 4 { x }^{ 4 }y+x{ y }^{ 4 } is 1 k \dfrac { 1 }{ k } .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Gautam Sharma
Oct 20, 2015

We factorize it as x y ( x 3 + y 3 ) xy(x^3+y^3) x y ( x 2 + y 2 x y ) \Rightarrow xy(x^2+y^2-xy) x y ( 1 3 x y ) \Rightarrow xy(1-3xy)

Now Applying AM-GM inequality.

3 x y + ( 1 3 x y ) 2 3 x y ( 1 3 x y ) \dfrac{3xy+(1-3xy)}{2} \ge \sqrt{3xy(1-3xy)}

Hence x y ( 1 3 x y ) 1 12 xy(1-3xy) \le \dfrac{1}{12}

Note that \Rightarrow is only used when a statement A A implies a statement B B , ie A B A \Rightarrow B . Never use it to mean equivalence.

Jake Lai - 5 years, 7 months ago

Log in to reply

Oh!ok thanks.I'll keep that in mind.

Gautam Sharma - 5 years, 7 months ago
Kay Xspre
Oct 18, 2015

We set x y = n xy = n as x y xy will be important afterwards. Factorize the original equation gives x y ( x 3 + y 3 ) xy(x^3+y^3) , or, in another form x y ( ( x + y ) 3 3 x y ( x + y ) ) xy((x+y)^3-3xy(x+y)) Now replace x y = n xy = n and x + y = 1 x+y=1 , which produce n ( 1 3 3 n ( 1 ) ) n(1^3-3n(1)) . To find the maximum of x 4 y + x y 4 x^4y+xy^4 , you will need to find n n which produce the maximum number in n 3 n 2 n-3n^2 . Upon solving the equation, n n which produce the maximum value is n = 1 6 n = \frac{1}{6} and the equation produced maximum value of 1 12 \frac{1}{12} , thus, k = 12 k=12

I'm writing x = 1 2 + h x=\frac{1}{2}+h and y = 1 2 h y=\frac{1}{2}-h . Then x 4 y + x y 4 x^4y+xy^4 = x y ( x 3 + y 3 ) = 3 h 4 + 1 2 h 2 + 1 16 =xy(x^3+y^3)=-3h^4+\frac{1}{2}h^2+\frac{1}{16} = 3 ( h 2 1 12 ) 2 + 1 12 =-3\left(h^2-\frac{1}{12}\right)^2+\frac{1}{12} , so that the maximum is 1 12 \frac{1}{12} and k = 12 k=\boxed{12}

Otto Bretscher - 5 years, 7 months ago

Nice solution but please explain how i will get the maximum of n 3 n 2 n-3{n}^2 ?

Priyanshu Mishra - 5 years, 7 months ago

Log in to reply

You may use differentiation or inequality (as hinted in the title), but here I prefer doing in inequality and perfect square. 3 n 2 + n = 3 ( ( n 2 2 n ( 1 6 ) + ( 1 6 ) 2 ) ( 1 6 ) 2 ) -3n^2+n = -3((n^2-2n(\frac{1}{6})+(\frac{1}{6})^2)-(\frac{1}{6})^2) which equals to 3 ( x 1 6 ) 2 + 3 36 -3(x-\frac{1}{6})^2+\frac{3}{36} For all real number m m , m 2 0 m^2 \geq 0 , thus ( x 1 6 ) 2 0 (x-\frac{1}{6})^2 \geq 0 3 ( x 1 6 ) 2 0 -3(x-\frac{1}{6})^2 \leq 0 and finally 3 ( x 1 6 ) 2 + 3 36 3 36 = 1 12 -3(x-\frac{1}{6})^2+\frac{3}{36} \leq \frac{3}{36} = \frac{1}{12}

Kay Xspre - 5 years, 7 months ago

Log in to reply

Ok, but what should i do after differentiating 6 n -6n to find the maximum?

Priyanshu Mishra - 5 years, 7 months ago

Log in to reply

@Priyanshu Mishra You differentiate it to find the relative maximum (which happened to be the maximum point of the graph as well). Differentiating it gives 1 6 n = 0 1-6n = 0 (as at the extreme point, the slope is zero), or n = 1 6 n = \frac{1}{6} . When you got n n , just substitute into n 3 n 2 n-3n^2 , which provides 1 6 ( 1 3 ( 1 6 ) ) = 1 6 ( 1 3 6 ) = 1 6 × 1 2 = 1 12 \frac{1}{6}(1-3(\frac{1}{6})) = \frac{1}{6}(1-\frac{3}{6}) = \frac{1}{6}\times\frac{1}{2} = \frac{1}{12}

Kay Xspre - 5 years, 7 months ago

Log in to reply

@Kay Xspre Ok now i understood the whole solution.

Thanks a lot.

Priyanshu Mishra - 5 years, 7 months ago
Chew-Seong Cheong
Oct 20, 2015

x 4 y + x y 4 = x y ( x 3 + y 3 ) = x y ( x + y ) ( x 2 + y 2 x y ) x + y = 1 = x y ( [ x + y ] 2 2 x y x y ) x 2 + y 2 = ( x + y ) 2 2 x y = x y ( 1 3 x y ) = 3 ( x y ) 2 + x y = 3 ( ( x y ) 2 1 3 x y + 1 36 1 36 ) = 1 12 3 ( x y 1 6 ) 2 Since 3 ( x y 1 6 ) 2 0 x 4 y + x y 4 1 12 Note that x y 1 6 = 0 , when x = 1 2 ± 3 6 , y = 1 2 3 6 \begin{aligned} x^4y + xy^4 & = xy(x^3+y^3) \\ & = xy(\color{#3D99F6}{x+y})(\color{#D61F06} {x^2+y^2}-xy) \quad \quad \quad \quad \small \color{#3D99F6}{x+y=1} \\ & = xy(\color{#D61F06}{[x+y]^2 - 2xy} - xy) \quad \quad \quad \quad \small \color{#D61F06}{x^2+y^2=(x+y)^2 -2xy} \\ & = xy(1-3xy) \\ & = - 3(xy)^2 + xy \\ & = - 3 \left((xy)^2 - \frac{1}{3} xy + \frac{1}{36} - \frac{1}{36} \right) \\ & = \frac{1}{12} - \color{#3D99F6}{3 \left(xy - \frac{1}{6}\right)^2} \quad \quad \quad \quad \quad \quad \small \color{#3D99F6}{\text{Since }3 \left(xy - \frac{1}{6}\right)^2 \ge 0} \\ \Rightarrow x^4y + xy^4 & \color{#3D99F6}{\le \boxed{\dfrac{1}{12}}} \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \small \color{#3D99F6}{\text{Note that } xy - \frac{1}{6} = 0, \text{when } x = \frac{1}{2} \pm \frac{\sqrt{3}}{6}, y = \frac{1}{2} \mp \frac{\sqrt{3}}{6}}\end{aligned}

Well Gautam! That's the perfect method to solve.

Priyanshu Mishra - 5 years, 7 months ago

Shouldn't it be (x^4)y+x(y^4) less than or equal to 1/12..

Hari prasad Varadarajan - 5 years, 7 months ago

Log in to reply

You are right. A typo. I am amending the solution.

Chew-Seong Cheong - 5 years, 7 months ago

Need to do one more step to show that the system of equations x y = 1 / 6 , x + y = 1 xy=1/6, x+y=1 has a real positive solution.

Abhishek Sinha - 5 years, 7 months ago

Log in to reply

You are right. I am amending the solution.

Chew-Seong Cheong - 5 years, 7 months ago
Satvik Pandey
Oct 22, 2015

As both x x and y y are positive real numbers so

s i n 2 ( x ) + c o s 2 ( x ) = 1 { sin }^{ 2 }(x)+{ cos }^{ 2 }(x)=1

Let x = s i n 2 ( x ) a n d y = c o s 2 ( x ) x={ sin }^{ 2 }(x)\quad and \quad y={ cos }^{ 2 }(x)

On putting values we get s i n 8 ( x ) c o s 2 ( x ) + c o s 8 ( x ) s i n 2 ( x ) { sin }^{ 8 }(x){ cos }^{ 2 }(x)+{ cos }^{ 8 }(x){ sin }^{ 2 }(x)

s i n 2 ( x ) c o s 2 ( x ) { ( c o s 6 ( x ) + s i n 6 x ) } { sin }^{ 2 }(x){ cos }^{ 2 }(x)\left\{ \left( { cos }^{ 6 }(x)+{ sin }^{ 6 }x \right) \right\}

Now as ( s i n 2 ( x ) + c o s 2 ( x ) ) 3 = 1 { ({ sin }^{ 2 }(x)+{ cos }^{ 2 }(x)) }^{ 3 }=1

c o s 6 ( x ) + s i n 6 ( x ) = 1 3 s i n 2 ( x ) c o s 2 ( x ) { cos }^{ 6 }(x)+{ sin }^{ 6 }(x)=1-3{ sin }^{ 2 }(x){ cos }^{ 2 }(x)

Also s i n 2 ( x ) c o s 2 ( x ) = 1 4 s i n 2 ( 2 x ) { sin }^{ 2 }(x){ cos }^{ 2 }(x)=\frac { 1 }{ 4 } { sin }^{ 2 }(2x)

Using these manipulations we get

3 16 s i n 4 ( 2 x ) + 1 4 s i n 2 ( 2 x ) \frac { -3 }{ 16 } { sin }^{ 4 }(2x)+\frac { 1 }{ 4 } { sin }^{ 2 }(2x)

This expression will attain it's maximum value when s i n 2 ( 2 x ) = 2 3 { sin }^{ 2 }(2x)=\frac { 2 }{ 3 } and this is in the range of values which s i n 2 ( 2 x ) sin^{2}(2x) can attain. So on putting values we get it's maximum value as 1 12 \frac{1}{12} .

Stating that x = sin 2 x x = \sin^2 x is not how one should make use of substitution. The equation x = sin 2 x x = \sin^2 x is only true for some x [ 0 , 1 ] x \in [0,1] . It is better to let x = sin 2 t x = \sin^2 t or x = sin 2 θ x = \sin^2 \theta instead, for example.

Jake Lai - 5 years, 7 months ago
Akshay Sharma
Jan 5, 2016

Here is the solution :

Thanks for another solution :)

Priyanshu Mishra - 5 years, 5 months ago
Aakash Khandelwal
Oct 30, 2015

Let x=cos^2(m) and y=sin^2(m).

required expression =z-3*z^2 . Where z=xy. Hence max value of this parabola is 1/12.

let f= (x^4)y+ x(y^4). we can write f=xy[1 -3xy]. take xy=t. then f= t[1-3t]. for' f ' to be maximum differentiation of 'f' ' w.r.to 't' must be zero. it gives t=1/6. hence xy=1/6. also given x + y=1. solving we get x=1/2 + sqrt(3)/6. and y= 1/2 - sqrt(3)/6. these values of x and Y satisfies given equation. hence f is maximum for xy =1/6. so maximum value of f = 1/6[ 1 - 3*(1/6)]=1/6[ 1 - 1/2]= 1/12. so 1/k = 1/12, hence k= 12.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...