Digit Function

Algebra Level 3

For any positive integer x x , function f ( x ) f(x) is defined as the number of digits of the number x x . For example, f ( 103 ) = 3 , f ( 7 8 ) = f ( 5764801 ) = 7 , f(103) = 3, f(7^8) = f(5764801) = 7, \cdots What is the value of the following sum

f ( 2 2019 ) + f ( 5 2019 ) = ? \large f(2^{2019})+f(5^{2019})=\ ?

2017 2020 1204 1123 2019

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We note that f ( x ) = log 10 x + 1 f(x) = \left \lfloor \log_{10} x \right \rfloor + 1 , where \lfloor \cdot \rfloor denotes the floor function . Then, we have:

f ( 2 2019 ) + f ( 5 2019 ) = log 10 2 2019 + 1 + log 10 5 2019 + 1 = 2019 log 10 2 + 2019 log 10 5 + 2 = 2019 × 0.3010 + 2019 × 0.6990 + 2 = 607.719 + 1411.281 + 2 = 607 + 1411 + 2 = 2020 \begin{aligned} f(2^{2019}) + f(5^{2019}) & = \left \lfloor \log_{10} 2^{2019} \right \rfloor + 1 + \left \lfloor \log_{10} 5^{2019} \right \rfloor + 1 \\ & = \left \lfloor 2019 \log_{10} 2 \right \rfloor + \left \lfloor 2019 \log_{10} 5 \right \rfloor + 2 \\ & = \left \lfloor 2019 \times 0.3010 \right \rfloor + \left \lfloor 2019 \times 0.6990 \right \rfloor + 2 \\ & = \left \lfloor 607.719 \right \rfloor + \left \lfloor 1411.281 \right \rfloor + 2 \\ & = 607 + 1411 + 2 = \boxed{2020} \end{aligned}

Awesome 👍🏻

Another way without using calculator log 2 2019 + log 5 2019 = log 2 2019 + log 5 2019 1 = log 1 0 2019 1 \lfloor{\log{2^{2019}}}\rfloor+\lfloor{\log5^{2019}}\rfloor=\lfloor{\log{2^{2019}}+\log{5^{2019}}}\rfloor-1=\log{10^{2019}}-1

Achmad Damanhuri - 1 year, 8 months ago

Log in to reply

log 10 1 0 2019 1 = 2019 1 = 2018 2020 \log_{10}10^{2019} - 1 = 2019 - 1 = 2018 \ne 2020

Chew-Seong Cheong - 1 year, 8 months ago

Log in to reply

Dont forget to add +2 from before sir

Achmad Damanhuri - 1 year, 8 months ago

Log in to reply

@Achmad Damanhuri But what you wrote was log 2 2019 + log 5 2019 = log 2 2019 + log 5 2019 1 = log 1 0 2019 1 = 2018 \lfloor{\log{2^{2019}}}\rfloor+\lfloor{\log5^{2019}}\rfloor=\lfloor{\log{2^{2019}}+\log{5^{2019}}}\rfloor-1=\log{10^{2019}}-1 = 2018

Chew-Seong Cheong - 1 year, 8 months ago

Log in to reply

@Chew-Seong Cheong I just cut your work for the floor functin, except the floor function everything is the same like yours, sorry for misleading you

Achmad Damanhuri - 1 year, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...