'Di'gonometry

Geometry Level 5

Given that sin 4 θ 5 + cos 4 θ 7 = 1 12 \dfrac{{\sin}^4 \theta}{5} + \dfrac{{\cos}^4 \theta}{7} = \dfrac{1}{12} , find the value of sin 2016 θ 5 1007 + cos 2016 θ 7 1007 \dfrac{{\sin}^{2016} \theta}{5^{1007}} + \dfrac{{\cos}^{2016} \theta}{7^{1007}} .

The answer can be expressed as 12 a {12}^{a} where a a is a real number. Submit the value of a a .


The answer is -1007.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Jun 27, 2016

Relevant wiki: Fundamental Trigonometric Identities - Problem Solving - Medium

sin 4 θ 5 + cos 4 θ 7 = 1 12 84 sin 4 θ + 60 cos 4 θ = 35 84 sin 4 θ + 60 ( 1 sin 2 θ ) 2 = 35 84 sin 4 θ + 60 ( 1 2 sin 2 θ + sin 4 θ ) = 35 144 sin 4 θ 120 sin 2 θ + 25 = 0 ( 12 sin 2 θ 5 ) 2 = 0 sin 2 θ = 5 12 cos 2 θ = 1 5 12 = 7 12 \begin{aligned} \frac {\sin^4 \theta}5 + \frac {\cos^4 \theta}7 & = \frac 1{12} \\ 84 \sin^4 \theta + 60 \cos^4 \theta & = 35 \\ 84 \sin^4 \theta + 60 (1-\sin^2 \theta)^2 & = 35 \\ 84 \sin^4 \theta + 60 (1-2\sin^2 \theta + \sin^4 \theta) & = 35 \\ 144 \sin^4 \theta - 120\sin^2 \theta + 25 & = 0 \\ (12 \sin^2 \theta - 5)^2 & = 0 \\ \implies \sin^2 \theta & = \frac 5{12} \\ \implies \cos^2 \theta & = 1 - \frac 5{12} = \frac 7{12} \end{aligned}

Now, we have:

sin 2016 θ 5 1007 + cos 2016 θ 7 1007 = ( sin 2 θ ) 1008 5 1007 + ( cos 2 θ ) 1008 7 1007 = ( 5 12 ) 1008 5 1007 + ( 7 12 ) 1008 7 1007 = 5 1 2 1008 + 7 1 2 1008 = 1 2 1007 \begin{aligned} \frac {\sin^{2016} \theta}{5^{1007}} + \frac {\cos^{2016} \theta}{7^{1007}} & = \frac {\left(\sin^2 \theta\right)^{1008}}{5^{1007}} + \frac {\left(\cos^2 \theta\right)^{1008}}{7^{1007}} \\ & = \frac {\left(\frac 5{12} \right)^{1008}}{5^{1007}} + \frac {\left(\frac 7{12} \right)^{1008}}{7^{1007}} \\ & = \frac 5{12^{1008}} + \frac 7{12^{1008}} \\ & = 12^{-1007} \end{aligned}

a = 1007 \implies a = \boxed{-1007}

Sir, sin 4 θ 5 + cos 4 θ 7 = 1 12 \dfrac{{\sin}^4 \theta}{5} + \dfrac{{\cos}^4 \theta}{7} = \dfrac{1}{12} .How sin 4 θ 5 + cos 4 θ 7 = 35 \dfrac{{\sin}^4 \theta}{5} + \dfrac{{\cos}^4 \theta}{7} =35 ?

A Former Brilliant Member - 4 years, 11 months ago

Thanks, a typo.

Chew-Seong Cheong - 4 years, 11 months ago
Rishabh Jain
Jun 27, 2016

Relevant wiki: Titu's Lemma

Applying Titu 's lemma :

( sin 2 θ ) 2 5 + ( cos 2 θ ) 2 7 ( sin 2 θ + cos 2 θ 1 ) 2 5 + 7 = 1 12 \dfrac{(\sin^2\theta)^2}{5}+\dfrac{(\cos^2\theta)^2}{7}\ge \dfrac{\left(\overbrace{\sin^2\theta+\cos^2\theta}^{\color{#D61F06}{1}}\right)^2}{5+7}=\dfrac1{12} So we see according to question equality holds in above inequality which is the case when sin 2 θ 5 = cos 2 θ 7 \dfrac{\sin^2\theta}5=\dfrac{\cos^2\theta}7 or sin 2 θ = 5 12 , cos 2 θ = 7 12 \sin^2\theta =\dfrac{5}{12},\cos^2\theta=\dfrac7{12} . Direct substitution in required expression gives: ( 5 12 ) 1008 5 1007 + ( 7 12 ) 1008 5 1007 = 1 2 1008 ( 5 + 7 ) = 1 2 1007 \dfrac{\left(\frac{5}{12}\right)^{1008}}{5^{1007}}+\dfrac{\left(\frac{7}{12}\right)^{1008}}{5^{1007}}=12^{-1008}(5+7)=12^{-1007}

Aaaaah, once again, you beat me to the exact same solution...

P.S. How many percent of the population, do you think, solved the problem this way? I did so ;)

Manuel Kahayon - 4 years, 11 months ago

Log in to reply

I don't think many would have thought about it... Since thinking about an inequality when given an equation to solve is very rare.. At least in this not such appearing question... :-)

Rishabh Jain - 4 years, 11 months ago

The creator probably also thought of it as well, so we have a minimum of 3 people XD

Manuel Kahayon - 4 years, 11 months ago

Log in to reply

Might be... But Ashish's (problem creator) method has been posted below... But yes there might be a possibility. :-)

Rishabh Jain - 4 years, 11 months ago

Log in to reply

@Rishabh Jain Hmm... I was thinking in order to make such a problem with a nice solution, i.e. exactly one value for sin 2 θ \sin^2 \theta and cos 2 θ \cos^2 \theta , one must use inequalities to get minimum or something along those lines.

Manuel Kahayon - 4 years, 11 months ago

Log in to reply

@Manuel Kahayon Go forward... :-)

Rishabh Jain - 4 years, 11 months ago

@Rishabh Jain Yep, I did use your method to solve the problem in the first place ;)- But I thought of finding a general solution :P. But you have represented the method in a stunning way, keep it up! :)

Ashish Menon - 4 years, 11 months ago
Ashish Menon
Jun 27, 2016

Relevant wiki: Fundamental Trigonometric Identities - Problem Solving - Medium

The given expression is of the form sin 4 θ x + cos 4 θ y = 1 x + y \dfrac{{\sin}^4 \theta}{x} + \dfrac{{\cos}^4 \theta}{y} = \dfrac{1}{x + y} .

sin 4 θ x + cos 4 θ y = 1 x + y ( x + y ) ( sin 4 θ x + cos 4 θ y ) = 1 sin 4 θ + cos 4 θ + y x sin 4 θ + x y cos 4 θ = sin 4 θ + cos 4 θ + 2 sin 2 θ cos 2 θ y x sin 4 θ + x y cos 4 θ 2 sin 2 θ cos 2 θ = 0 ( y x sin 2 θ x y cos 2 θ ) 2 = 0 y x sin 2 θ x y cos 2 θ = 0 y x sin 2 θ = x y cos 2 θ sin 2 θ cos 2 θ = x y sin 2 θ x = cos 2 θ y sin 2 θ x = cos 2 θ y = sin 2 θ + cos 2 θ a + b ( Rule of proportions ) sin 2 θ x = cos 2 θ y = 1 a + b sin 2 θ = x x + y ( and ) cos 2 θ = y x + y 1 \begin{aligned} \dfrac{{\sin}^4 \theta}{x} + \dfrac{{\cos}^4 \theta}{y} & = \dfrac{1}{x + y}\\ \\ (x + y)\left(\dfrac{{\sin}^4 \theta}{x} + \dfrac{{\cos}^4 \theta}{y}\right) & = 1\\ \\ {\sin}^4 \theta + {\cos}^4 \theta + \dfrac{y}{x}{\sin}^4 \theta + \dfrac{x}{y}{\cos}^4 \theta & = {\sin}^4 \theta + {\cos}^4 \theta + 2{\sin}^2 \theta {\cos}^2 \theta\\ \\ \dfrac{y}{x}{\sin}^4 \theta + \dfrac{x}{y}{\cos}^4 \theta - 2{\sin}^2 \theta {\cos}^2 \theta & = 0\\ \\ {\left(\sqrt{\dfrac{y}{x}} {\sin}^2 \theta - \sqrt{\dfrac{x}{y}} {\cos}^2 \theta\right)}^2 & = 0\\ \\ \sqrt{\dfrac{y}{x}} {\sin}^2 \theta - \sqrt{\dfrac{x}{y}} {\cos}^2 \theta & = 0\\ \\ \sqrt{\dfrac{y}{x}} {\sin}^2 \theta & = \sqrt{\dfrac{x}{y}} {\cos}^2 \theta\\ \\ \dfrac{{\sin}^2 \theta}{{\cos}^2 \theta} & = \dfrac{x}{y}\\ \\ \dfrac{{\sin}^2 \theta}{x} & = \dfrac{{\cos}^2 \theta}{y}\\ \\ \dfrac{{\sin}^2 \theta}{x} & = \dfrac{{\cos}^2 \theta}{y} = \dfrac{{\sin}^2 \theta + {\cos}^2 \theta}{a + b} \left(\text{Rule of proportions}\right)\\ \\ \dfrac{{\sin}^2 \theta}{x} & = \dfrac{{\cos}^2 \theta}{y} = \dfrac{1}{a + b}\\ \\ {\sin}^2 \theta = \dfrac{x}{x+y} & \left(\text{and}\right) {\cos}^2 \theta = \dfrac{y}{x+y} \longrightarrow \boxed{1} \end{aligned}

Now, we see that 2016 = 4 × 504 2016 = 4×504 and 1007 = 2 × 504 1 1007 = 2×504 - 1 . So, the expression we have to evaluate can be written as sin 4 n θ x 2 n 1 + cos 4 n θ y 2 n 1 \dfrac{{\sin}^{4n} \theta}{x^{2n - 1}} + \dfrac{{\cos}^{4n} \theta}{y^{2n - 1}} .

sin 4 n θ x 2 n 1 + cos 4 n θ y 2 n 1 = ( sin 2 θ ) 2 n x 2 n 1 + ( cos 2 θ ) 2 n y 2 n 1 Plugging in the values from 1 : = 1 x 2 n 1 ( x x + y ) 2 n + 1 y 2 n 1 ( y x + y ) 2 n = x ( x + y ) 2 n + y ( x + y ) 2 n = x + y ( x + y ) 2 n = 1 ( x + y ) 2 n 1 \begin{aligned} \dfrac{{\sin}^{4n} \theta}{x^{2n - 1}} + \dfrac{{\cos}^{4n} \theta}{y^{2n - 1}} & = \dfrac{{\left(\sin^2 \theta\right)}^{2n}}{x^{2n - 1}} + \dfrac{{\left(\cos^2 \theta\right)}^{2n}}{y^{2n - 1}}\\ \\ \text{Plugging in the values from} \ \boxed{1}:-\\ \\ & = \dfrac{1}{x^{2n - 1}}{\left(\dfrac{x}{x+y}\right)}^{2n} + \dfrac{1}{y^{2n - 1}}{\left(\dfrac{y}{x+y}\right)}^{2n}\\ \\ & = \dfrac{x}{{(x+y)}^{2n}} + \dfrac{y}{{(x+y)}^{2n}}\\ \\ & = \dfrac{x+y}{{(x+y)}^{2n}}\\ \\ & = \dfrac{1}{{(x+y)}^{2n-1}} \end{aligned} ]

So, plugging in x = 5 x=5 and y = 7 y=7 and n = 504 n=504 , we get:-
sin 2016 θ 5 1007 + cos 2016 θ 7 1007 = 1 ( 5 + 7 ) 2 × 504 1 = 1 12 1007 = 12 1007 a = 1007 \begin{aligned} \dfrac{{\sin}^{2016} \theta}{5^{1007}} + \dfrac{{\cos}^{2016} \theta}{7^{1007}} & = \dfrac{1}{{(5+7)}^{2×504 - 1}}\\ \\ & = \dfrac{1}{{12}^{1007}}\\ \\ & = {12}^{-1007}\\ \\ \therefore a & = \color{#3D99F6}{\boxed{-1007}} \end{aligned}

+1 for generalizing :)

Sabhrant Sachan - 4 years, 11 months ago

Thanks :) :)

Ashish Menon - 4 years, 11 months ago

Where the right side comment is Rule of Proportion and a line there after,
there should be x and y in place of a and b.

Niranjan Khanderia - 4 years, 4 months ago

Almost same as Mr. Chew-Seong Cheong .
sin 2 θ + cos 2 θ = 1 , s o w e h a v e , sin 4 θ 5 + cos 4 θ 7 = 1 12 7 sin 4 θ + 5 ( 1 cos 2 θ ) 2 = 35 12 144 sin 4 θ 120 sin 2 θ + 60 = 35 ( 12 sin 2 θ ) 2 10 ( 12 sin 2 θ ) + 25 = 0 ( 12 sin 2 θ 5 ) 2 = 0 sin 2 θ = 5 12 cos 2 θ = 1 5 12 = 7 12 sin 2016 θ 5 1007 + cos 2016 θ 7 1007 = ( sin 2 θ ) 1008 5 1007 + ( cos 2 θ ) 1008 7 1007 = ( 5 12 ) 1008 5 1007 + ( 7 12 ) 1008 7 1007 = 5 1 2 1008 + 7 1 2 1008 = 1 2 1007 a = 1007 . \sin^2 \theta+\cos^2 \theta=1, so~we~have,\\ \begin{aligned} \frac {\sin^4 \theta}5 + \frac {\cos^4 \theta}7 & = \frac 1{12} \\ 7 \sin^4 \theta + 5 (1-\cos^2 \theta)^2 & = \frac{35}{12} \\ 144 \sin^4 \theta - 120 \sin^2 \theta +60& = 35 \\ (12 \sin^2 \theta)^2 - 10(12\sin^2 \theta) + 25 & = 0 \\ (12 \sin^2 \theta - 5)^2 & = 0 \\ \implies \sin^2 \theta & = \frac 5{12} \\ \implies \cos^2 \theta & = 1 - \frac 5{12} = \frac 7{12} \\ \frac {\sin^{2016} \theta}{5^{1007}} + \frac {\cos^{2016} \theta}{7^{1007}} & = \frac {\left(\sin^2 \theta\right)^{1008}}{5^{1007}} + \frac {\left(\cos^2 \theta\right)^{1008}}{7^{1007}} \\ & = \frac {\left(\frac 5{12} \right)^{1008}}{5^{1007}} + \frac {\left(\frac 7{12} \right)^{1008}}{7^{1007}} \\ & = \frac 5{12^{1008}} + \frac 7{12^{1008}} \\ & = 12^{-1007} \end{aligned} \\ \therefore~ a=\Large \color{#D61F06}{-1007} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...