Algebra + Calculus = Algebrus

Calculus Level 4

U n = 0 π 2 1 cos ( 2 n x ) 1 cos ( 2 x ) d x = U 1 U 2 U 3 U 4 U 5 U 6 U 7 U 8 U 9 = ? \begin{aligned} { U }_{ n } &= & \int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { 1-\cos\ (2nx) }{ 1-\cos\ (2x) } } \ dx \\ \triangle &= & \left| \begin{matrix} { U }_{ 1 } & { U }_{ 2 } & { U }_{ 3 } \\ { U }_{ 4 } & { U }_{ 5 } & { U }_{ 6 } \\ { U }_{ 7 } & { U }_{ 8 } & { U }_{ 9 } \end{matrix} \right| \\ \left\lfloor \triangle \right\rfloor &= & \ ? \end{aligned}


This is a problem of my set JEE Calculus .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Vighnesh Raut
May 7, 2015

We know that U n = 0 π 2 1 cos ( 2 n x ) 1 cos ( 2 x ) d x = 0 π 2 2 s i n 2 n x 2 s i n 2 x d x = 0 π 2 s i n 2 n x s i n 2 x d x = n π 2 { U }_{ n }=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { 1-\cos (2nx) }{ 1-\cos (2x) } } dx\\ =\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { 2{ sin }^{ 2 }nx }{ 2{ sin }^{ 2 }x } } dx\\ =\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { { sin }^{ 2 }nx }{ { sin }^{ 2 }x } } dx\\ =\frac { n\pi }{ 2 } Hence, the value of \triangle can be written as π 2 π 3 π 2 2 π 5 π 2 3 π 7 π 2 4 π 9 π 2 \left| \begin{matrix} \frac { \pi }{ 2 } & \pi & \frac { 3\pi }{ 2 } \\ 2\pi & \frac { 5\pi }{ 2 } & 3\pi \\ \frac { 7\pi }{ 2 } & 4\pi & \frac { 9\pi }{ 2 } \end{matrix} \right| C 2 C 2 C 1 , C 3 C 3 C 1 = π 2 π 2 π 2 π π 2 π 7 π 2 π 2 π { C }_{ 2 }\rightarrow { C }_{ 2 }-{ C }_{ 1 },{ C }_{ 3 }\rightarrow { C }_{ 3 }-{ C }_{ 1 }\\ =\left| \begin{matrix} \frac { \pi }{ 2 } & \frac { \pi }{ 2 } & \pi \\ 2\pi & \frac { \pi }{ 2 } & \pi \\ \frac { 7\pi }{ 2 } & \frac { \pi }{ 2 } & \pi \end{matrix} \right| = π 2 2 π 2 1 1 2 π 1 1 7 π 2 1 1 = 0 \\ =\frac { { \pi }^{ 2 } }{ 2 } \left| \begin{matrix} \frac { \pi }{ 2 } & 1 & 1 \\ 2\pi & 1 & 1 \\ \frac { 7\pi }{ 2 } & 1 & 1 \end{matrix} \right| =0

Can you explain hw to evaluate the integral of sin ^2 nx/ sin ^ 2 x .

Athul Nambolan - 6 years, 1 month ago

Log in to reply

I found U 1 , U 2 , U 3 which came out to be pi/2 , pi , 3pi/2 . So, we can assume U n=n pi/2 and prove it by induction.

Vighnesh Raut - 6 years, 1 month ago

Log in to reply

can u please post it here... I dint quite seem to understand it.

Harshvardhan Mehta - 6 years, 1 month ago

Log in to reply

@Harshvardhan Mehta I asked Brian sir his opinion and he sent me this . From here he concluded that due to symmetry, the integral from 0 0 to π 2 \dfrac{\pi}{2} is 1 4 2 n π = n π 2 . \dfrac{1}{4}*2n\pi = \dfrac{n\pi}{2}.

Vighnesh Raut - 6 years, 1 month ago

U n + U n + 2 2 U n + 1 = 0 π 2 ( 1 c o s 2 n x ) + [ 1 c o s ( 2 n + 4 ) x ] 2 [ 1 c o s ( 2 n + 2 ) x ] ( 1 c o s 2 x ) d x { U }_{ n }+{ U }_{ n+2 }-{ 2U }_{ n+1 }=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { \left( 1-cos2nx \right) +\left[ 1-cos\left( 2n+4 \right) x \right] -2\left[ 1-cos\left( 2n+2 \right) x \right] }{ (1-cos2x) } } dx

= 0 π 2 2 c o s ( ( 2 n + 2 ) x ) . c o s 2 x + 2 c o s ( ( 2 n + 2 ) x ) ( 1 c o s 2 x ) d x =\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { -2cos\left( \left( 2n+2 \right) x \right) .cos2x+2cos\left( \left( 2n+2 \right) x \right) }{ (1-cos2x) } } dx

= 0 π 2 2 c o s ( ( 2 n + 2 ) x ) d x =\int _{ 0 }^{ \frac { \pi }{ 2 } }{ 2cos\left( \left( 2n+2 \right) x \right) } dx

= 2 [ s i n ( 2 n + 2 ) x 2 n + 2 ] 0 π 2 = 0 =2{ \left[ \frac { sin\left( 2n+2 \right) x }{ 2n+2 } \right] }_{ 0 }^{ \frac { \pi }{ 2 } }=0

U n + U n + 2 2 U n + 1 = 0 . . . ( 1 ) \therefore \quad \quad { U }_{ n }+{ U }_{ n+2 }-{ 2U }_{ n+1 } \ = \ 0 \quad \quad \quad \quad \quad ...(1)

Now applying, C 1 + C 3 2 C 2 C_{ 1 }+{ C }_{ 3 }-2C_{ 2 } , then by relation (1) each element in new C 1 {C}_{1} will be zero corresponding to n=1, 4, 7 .

= 0 = 0 \therefore \quad \quad \quad \left\lfloor \triangle \right\rfloor =\left\lfloor 0 \right\rfloor =\boxed{0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...