Diwali Special

Calculus Level 4

If the solution of dy dx = a x + 3 2 y + f \dfrac{\text{dy}}{\text{dx}} = \dfrac{\color{#3D99F6}ax + 3}{2y + f} represents a circle, then the value of a \color{#3D99F6}{a} is

0 -4 -2 2 3 1 None of these

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 11, 2015

Easier Solution thanks to @Atomsky Jahid

Using the general formula of a circle (x-p)^2 + (y-q)^2 & = r^2 , where ( p , q ) (p,q) is the center and r r the radius of the circle, then we have:

( x p ) 2 + ( y q ) 2 = r 2 Differentiate both sides w.r.t. x 2 ( x p ) + 2 ( y q ) d y d x = 0 d y d x = x p y q a x + 3 2 y + f = x p y q Equating the coefficients on both sides a = 2 \begin{aligned} (x-p)^2 + (y-q)^2 & = r^2 & \small \color{#3D99F6} \text{Differentiate both sides w.r.t. }x \\ 2(x-p) + 2(y-q)\frac {dy}{dx} & = 0 \\ \frac {dy}{dx} & = - \frac {x-p}{y-q} \\ \frac {ax+3}{2y+f} & = - \frac {x-p}{y-q} & \small \color{#3D99F6} \text{Equating the coefficients on both sides} \\ \implies a & = \boxed{-2} \end{aligned}


Previous solution

d y d x = a x + 3 2 y + f ( 2 y + f ) d y d x = a x + 3 ( 2 y + f ) d y = a x + 3 d x y 2 + f y = a 2 x 2 + 3 x + C where C is the constant of integration. y 2 + f y a 2 x 2 3 x = C . . . ( 1 ) \begin{aligned} \frac{dy}{dx} & = \frac{\color{#3D99F6}{a}x+3}{2y+f} \\ (2y+f) \frac{dy}{dx} & = \color{#3D99F6}{a}x+3 \\ \int (2y+f) \ dy & = \int {\color{#3D99F6}{a}x+3} \ dx \\ y^2 + fy & = \frac{\color{#3D99F6}{a}}{2}x^2+3x +C \quad \quad \small \color{#3D99F6}{\text{where } C \text{ is the constant of integration.}} \\ y^2 + fy - \frac{\color{#3D99F6}{a}}{2}x^2 - 3x & = C \quad \quad ...(1) \end{aligned}

For ( 1 ) (1) to be a circle, it is of the form:

( x p ) 2 + ( y q ) 2 = r 2 where ( p , q ) is the center of the circle and r , the radius. ( a 2 ) x 2 3 x + 9 4 + y 2 + f y + f 2 4 = 9 4 + f 2 4 + C ( x 3 2 ) 2 + ( y + f 2 ) 2 = 9 + f 2 4 + C Note that the coefficient of x 2 must be 1. a 2 = 1 a = 2 \begin{aligned} (x-p)^2 + (y-q)^2 & = r^2 & \small \color{#3D99F6} \text{where }(p,q) \text{ is the center of the circle and }r \text{, the radius.} \\ {\color{#3D99F6}\left(-\frac a2\right)x^2 - 3x + \frac 94} + {\color{#D61F06} y^2 + fy + \frac {f^2}4} & = \frac 94 + \frac {f^2}4 + C \\ {\color{#3D99F6}\left(x-\dfrac{3}{2}\right)^2} + {\color{#D61F06}\left(y+\dfrac{f}{2}\right)^2} & = \dfrac{9+f^2}{4} + C & \small \color{#3D99F6} \text{Note that the coefficient of }x^2 \text{ must be }1. \\ \implies - \dfrac{\color{#3D99F6}{a}}{2} & = 1 \\ \implies \color{#3D99F6}{a} & = \boxed{-2} \end{aligned}

Sir..what after [(f^2+9)/4]+k

Tushar Maske - 3 years, 7 months ago

Log in to reply

a 2 = 1 a = 2 \implies - \dfrac{\color{#3D99F6}{a}}{2} = 1 \implies \color{#3D99F6}{a} = \boxed{-2}

Chew-Seong Cheong - 3 years, 7 months ago

Log in to reply

I mean ...the step after the equation I stated ... Where's that 'f'... And how did u arrived at that step...

Tushar Maske - 3 years, 7 months ago

Log in to reply

@Tushar Maske I have added a few lines to explain. Hope it is useful.

Chew-Seong Cheong - 3 years, 7 months ago

Another approach can be starting from the general equation of a circle. We would get, d y d x = x + p y q \frac{dy}{dx}=\frac{-x+p}{y-q} . Then, we can say if the coefficient of 'y' is 'a', the coefficient of 'x' should be '-a'.

Atomsky Jahid - 3 years, 6 months ago

Log in to reply

Thanks. I have added your solution.

Chew-Seong Cheong - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...