Do orthodox methods always work?

Calculus Level 5

0 π / 2 ( ln ( cos 2 x ) ) 2 d x = π A B + C π ( ln D ) E \large \int_0^{\pi /2} \left( \ln( \cos^2 x ) \right)^2 \, dx =\dfrac { { \pi }^{ A } }{ B } +C\pi { \left( \ln { D } \right) }^{ E }

If the equation above holds true for positive integers A , B , C , D A,B,C,D and E E , find the minimum value of A + B + C + D + E A+B+C+D+E .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Alternate Approach :

Consider the integral J ( a ) = 2 a 0 π 2 sin a ( x ) d x = 2 a 1 Γ ( a + 1 2 ) π Γ ( a 2 + 1 ) \displaystyle J(a) = 2^a\int_{0}^{\frac{\pi}{2}} \sin^a(x)dx = \frac{2^{a-1}\Gamma(\frac{a+1}{2})\sqrt{\pi}}{\Gamma(\frac{a}{2}+1)}

Our integral is equal to I = 0 π 2 ( ln ( cos 2 x ) ) 2 d x = 4 J ( 0 ) + 2 π ln 2 2 \displaystyle I = \int_{0}^{\frac{\pi}{2}}(\ln(\cos^2 x))^2dx = 4J''(0) + 2\pi\ln^2 2

On calculation we have J ( 0 ) = π 3 24 \displaystyle J''(0)=\frac{\pi^3}{24} which turns I = π 3 6 + 2 π ln 2 2 \displaystyle I=\frac{\pi^3}{6}+2\pi\ln^2 2 making the answer 3 + 6 + 2 + 2 + 2 = 15 \boxed{3+6+2+2+2=15}

Yes we land on to the same thing!

Aditya Kumar - 5 years ago
Aditya Kumar
Feb 18, 2016

0 π 2 s i n 2 m 1 ( x ) c o s 2 n 1 ( x ) d x = B ( m , n ) 0 π 2 s i n 2 m 1 ( x ) ( c o s 2 x ) 2 n 1 2 d x = B ( m , n ) \int _{ 0 }^{ \frac { \pi }{ 2 } }{ { sin }^{ 2m-1 }\left( x \right) { cos }^{ 2n-1 }\left( x \right) dx } =B\left( m,n \right) \\ \int _{ 0 }^{ \frac { \pi }{ 2 } }{ { sin }^{ 2m-1 }\left( x \right) { \left( { cos }^{ 2 }x \right) }^{ \frac { 2n-1 }{ 2 } }dx } =B\left( m,n \right)

On differentiating it twice w.r.t. to n and taking m = 1 2 m=\frac{1}{2} and n = 1 2 n=\frac{1}{2} , we get

0 π 2 ( ln ( c o s 2 x ) d x ) 2 = 1 2 ( Γ ( 1 2 ) ) 2 1 { ( ψ ( 1 2 ) ψ ( 1 ) ) 2 + ψ ( 1 2 ) ψ ( 1 ) } \int _{ 0 }^{ \frac { \pi }{ 2 } }{ (\ln { \left( { cos }^{ 2 }x \right) dx })^2 } =\frac { 1 }{ 2 } \frac { { \left( \Gamma \left( \frac { 1 }{ 2 } \right) \right) }^{ 2 } }{ 1 } \left\{ { \left( \psi \left( \frac { 1 }{ 2 } \right) -\psi \left( 1 \right) \right) }^{ 2 }+\psi '\left( \frac { 1 }{ 2 } \right) -\psi '\left( 1 \right) \right\}

0 π 2 ( ln ( c o s 2 x ) d x ) 2 = π 3 6 + 2 π ( ln 2 ) 2 \therefore \int _{ 0 }^{ \frac { \pi }{ 2 } }{ (\ln { \left( { cos }^{ 2 }x \right) dx })^2 } =\frac { { \pi }^{ 3 } }{ 6 } +2\pi { \left( \ln { 2 } \right) }^{ 2 }

This problem is not original. I found it here

Aditya Kumar - 5 years, 3 months ago

Log in to reply

You have also copied the exact same solution :P

Harsh Shrivastava - 5 years, 3 months ago

Log in to reply

Yes I copied the same solution because it was mine. You can copy whatever is yours.

Aditya Kumar - 5 years, 3 months ago

Log in to reply

@Aditya Kumar I know, just tried to be sarcastic.

Harsh Shrivastava - 5 years, 3 months ago

You us to find " A + B + C + D + E A+B+C+D+E ", and not " m i n { A + B + C + D + E } \mathrm{min}\{A+B+C+D+E\} ". There is no point in taking the minimum of a single number!

Mark Hennings - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...